Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 751-756    DOI: 10.3724/SP.J.1037.2013.00045
Current Issue | Archive | Adv Search |
EFFECTS OF Cr PLATING LAYER ON SHEAR STRENGTH AND INTERFACE BONDING CHARACTERISTICS OF MILD STEEL/CFRP JOINT BY LASER HEATING
TAN Xianghu1),SHAN Jiguo1,2),REN Jialie1)
1) Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2) Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084
Cite this article: 

TAN Xianghu,SHAN Jiguo,REN Jialie. EFFECTS OF Cr PLATING LAYER ON SHEAR STRENGTH AND INTERFACE BONDING CHARACTERISTICS OF MILD STEEL/CFRP JOINT BY LASER HEATING. Acta Metall Sin, 2013, 49(6): 751-756.

Download:  PDF(2437KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The carbon fiber reinforced polymer (CFRP) has been widely used in aerospace and military fields, whereas it is still at its initial stage in the field of automobile manufacturing, wind power generation and so on. One of the main reasons to restrict its wide application is that the strength of metal/CFRP joint is very low and cannot meet the industrial requirements. In this study, an investigation of the laser joining between CFRP and mild steel with Cr electroplating was presented. The influence of Cr plating layer on shear strength of mild steel/CFRP lap joint was studied and the bonding characteristics of the joint interface were analyzed by SEM and XPS. The results show that Cr plating layer can greatly improve the shear force and shear strength of mild steel/CFRP joint. The shear force increases from 2237.37 N to 6127.81 N and the shear strength increases from 9.32 MPa to 22.14 MPa. For the mild steel/CFRP joint without Cr plating, the shear failure happens at the interface. However, for the mild steel/CFRP joint with Cr plating, the shear failure happens at the porosities zone in the CFRP. It means that the Cr plating can improve the interfacial bonding strength. The results of SEM observation and XPS analyses show that the mechanical bonding represented as the ``anchoring effect'' is achieved at the mild steel/CFRP interface both with and without Cr plating. But the chemical bonding is detected only at the mild steel/CFRP interface with Cr plating, which is considered as an important reason that the Cr plating can improve the bonding strength of the mild steel/CFRP joint.

Key words:  mild steel/CFRP dissimilar joint      Cr plating layer      laser joining, interfacial       reaction      shear strength     
Received:  24 January 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00045     OR     https://www.ams.org.cn/EN/Y2013/V49/I6/751

[1]Williams G J,Trask R S, Bond I P. Composites, 2007; 38A: 1525
[2] Soutis C. Mater Sci Eng, 2005; A412: 171
[3] Vaidya U K, Chawla K K. Int Mater Rev, 2008; 53:185
[4] Duflou J R, De Moor J, Verpoest I, Dewulf W.CIRP Ann Manuf Technol, 2009; 58: 9
[5] Jaeschke P, Herzog D, Haferkamp H, Peters C, Herrmann AS. J Reinf Plast Compos, 2010; 29: 3083
[6] Amancio--Filho S T, Santos J F D. Polym Eng Sci,2009; 8: 1461
[7] Ageorges C, Ye L, Hou M. Composites, 2001; 32A:839
[8] Hino M, Mitooka Y, Murakami K, Kanadani T. In: Chandra T,Ionescu M, Mantovani D eds., Materials Science Forum,Quebec: Trans Tech Publications Ltd, 2012: 2956
[9] Katayama S, Jung K W, Kawahito Y. In: David A ed.,ICALEO 2010 Congress Proceedings, Orlando: Laser Instituteof America, 2010: 333
[10] Jung K W, Kawahito Y, Katayama S. Sci Technol Weld Join, 2011; 16: 676
[11] Katayama S, Kawahito Y. Scr Mater, 2008; 59:1247
[12] Wahba M, Kawahito Y, Katayama S. J Mater Process Technol, 2011; 211: 1166
[13] Kawahito Y, Tange A, Kubota S, Katayama S. In: Laser Institute of America ed., ICALEO 2006 Congress Proceedings, Orlando: Laser Institute of America, 2006: 376
[14] Roesner A, Scheik S, Olowinsky A, Gillner A, Poprawe R, Schleser M, Reisgen U. J Laser Appl, 2011; 23:032007-1
[15] Holtkamp J, Roesner A, Gillner A. Int J Adv Manuf Technol, 2010; 47: 923
[16] Lee H Y, Qu J M. J Adhes Sci Technol, 2003; 17:195
[17] Ho P S, Hahn P O, Bartha J W, Rubloff G W, Legoues F K, Silverman B D. J Vac Sci Technol, 1985; 3A: 739
[18] Chou N J, Tang C H. J Vac Sci Technol, 1984; 2A:751
[19] Bebin P, Prud'Homme R E. J Vac Sci Technol, 2002;20A: 1611
[20] Cantrell J H. J Appl Phys, 2004; 96: 3775
[21] McCafferty E. J Adhes Sci Technol, 2002; 16: 239
[22] Fortunato A, Cuccolini G, Ascari A, Orazi L, Campana G, Tani G. Int J Mater Form, 2010; 3(suppl 1): 1131
[23] Goldberg M J, Clabes J G, Kovac C A. J Vac Sci Technol, 1988; 6A: 991
[24] Friedrich J F, Koprinarov I, Giebler R, Lippitz A, Unger W E S. J Adhes, 1999; 71: 297
[25] Tang D Y, Guo Y D, Zhang X H, Liu J. Surf Interface Anal, 2009; 41: 974

[1] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[2] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[3] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[4] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[5] DING Wen, WANG Xiaojing, LIU Ning, QIN Liang. Diffusion Bonding of Copper and 304 Stainless Steel with an Interlayer of CoCrFeMnNi High-Entropy Alloy[J]. 金属学报, 2020, 56(8): 1084-1090.
[6] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[7] LI Yaqiang, LIU Jianhua, DENG Zhenqiang, QIU Shengtao, ZHANG Pei, ZHENG Guiyun. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. 金属学报, 2020, 56(10): 1335-1342.
[8] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[9] WANG Zumin,ZHANG An,CHEN Yuanyuan,HUANG Yuan,WANG Jiangyong. Research Progress on Fundamentals and Applications of Metal-Induced Crystallization[J]. 金属学报, 2020, 56(1): 66-82.
[10] Hulin DONG,Haiping BAO,Jianhong PENG. Effect of TiC Contents on Mechanical Properties and Wear Resistance of Iron-Based Composites[J]. 金属学报, 2019, 55(8): 1049-1057.
[11] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[12] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[13] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[14] Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism[J]. 金属学报, 2019, 55(1): 87-100.
[15] Jianqiang REN, Shuhua LIANG, Yihui JIANG, Xiang DU. Research on the Microstructure and Properties of In Situ (TiB2-TiB)/Cu Composites[J]. 金属学报, 2019, 55(1): 126-132.
No Suggested Reading articles found!