Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (2): 167-174    DOI: 10.3724/SP.J.1037.2012.00545
Current Issue | Archive | Adv Search |
SPLIT FRACTURE PHENOMENON AND MECHANISM IN TENSILE TESTS OF HIGH STRENGTH LOW CARBON BAINITIC STEEL
LI Xiucheng, XIE Zhenjia, WANG Xuelin, WANG Xuemin, SHANG Chengjia
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

LI Xiucheng, XIE Zhenjia, WANG Xuelin, WANG Xuemin, SHANG Chengjia. SPLIT FRACTURE PHENOMENON AND MECHANISM IN TENSILE TESTS OF HIGH STRENGTH LOW CARBON BAINITIC STEEL. Acta Metall Sin, 2013, 49(2): 167-174.

Download:  PDF(3166KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Split fracture phenomenon in tensile tests of a high strength low carbon bainitic steel plate was investigated. Regular tensile tests in the longitudinal direction and short bar tensile tests in three principal axis directions were performed. The results showed that split fracture always occurred when the tensile direction was longitudinal or transverse. The splitting surface was almost parallel to the direction of thickness. According to SEM observation of splitting crack, it was found that the ‘split’ had features of cleavage fracture. Meanwhile, the original steel plate was experimentally proved to have similar strength and ductility in the longitudinal direction, the transverse direction and the direction of thickness. Based on a finite element analysis simulation, the lateral tensile stress within the necked zone was calculated to be much lower than the principle tensile stress. Thus, a mechanism transition from ductile to brittle during the tension process was proposed. Moreover, it was revealed that the split fracture is not definitely the result of lower performance along the direction of thickness, but it is caused by the comprehensive influence of texture evolution, the redistribution of grain boundaries and the state of three dimensional stresses with large tensile plastic deformation, which can be considered as the characteristic of mechanical property of bainitic steel.

 
Key words:  split fracture      bainite      ductility      texture, grain boundary     
Received:  14 September 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00545     OR     https://www.ams.org.cn/EN/Y2013/V49/I2/167

[1] Shang C J, Wang X M, Zhou Z J, Liang X, Miao C L, He X L. Acta Metall Sin, 2008; 44: 287


(尚成嘉, 王学敏, 周召槿, 梁鑫, 缪成亮, 贺信莱. 金属学报, 2008; 44: 287)

[2] Morris J W, Guo Z, Krenn C R, Kim Y H. ISIJ Int, 2001; 41: 599

[3] Morris J W, Lee C S, Guo Z. ISIJ Int, 2003; 43: 410

[4] Shang C J, Wang X M, Yang S W, He X L, Wu H B. Acta Metall Sin, 2003; 39: 1019

(尚成嘉, 王学敏, 杨善武, 贺信莱, 武会宾. 金属学报, 2003; 39: 1019)

[5] Weng Y Q, Yang C F, Shang C J. Iron Steel, 2011; 46(9): 1

(翁宇庆, 杨才福, 尚成嘉. 钢铁, 2011; 46(9): 1)

[6] Nie Y, Shang C J, You Y, Li X C, Cao J P, He X L. J Iron Steel Res Int, 2010; 7: 63

[7] Bramfitt B L, Marder A R. Metall Trans, 1977; 8A: 1263

[8] Baldi G, Buzzichelli G. Met Sci, 1978; 10: 459

[9] Yan W, Sha W, Zhu L, Wang W, Shan Y Y, Yang K. Metall Mater Trans, 2010; 41A: 159

[10] Han J, Gao L. Wide Heavy Plate, 2006; 12(1): 30

(韩炯, 高亮. 宽厚板, 2006; 12(1): 30)

[11] Xiong Q R, Feng Y R, Huo C Y, Li W W. Mater Mech Eng, 2005; 29(12): 21

(熊庆人, 冯耀荣, 霍春勇, 李为卫. 机械工程材料, 2005; 29(12): 21)

[12] Wang Z Y, Yue K X. Wide Heavy Plate, 2009; 15(3): 11

(王智轶, 乐可襄. 宽厚板, 2009; 15(3): 11)

[13] Yang M, Chao Y J, Li X D, Tan J Z. Mater Sci Eng, 2008; A497: 451

[14] Yang M, Chao Y J, Li X D, Immel D, Tan J Z. Mater Sci Eng, 2008; A497: 462

[15] McEvily A J, Bush R H. Trans ASM, 1962; 55: 654

[16] Mao W M, Yang P, Chen L. Analysis Principle and Detection Technique of Material Texture.

Beijing: Metallurgy Industry Press, 2008: 21

(毛卫民, 杨平, 陈冷. 材料织构分析原理与检测技术. 北京: 冶金工业出版社, 2008: 21)

[17] Yang S W, Shang C J, Wang X M, He X L. Acta Metall Sin, 2003; 39: 579

(杨善武, 尚成嘉, 王学敏, 贺信莱. 金属学报, 2003; 39: 579)

[18] Tsuji N, Ueji R, Minamino Y, Saito Y. Scr Mater, 2002; 46: 305

[19] Kimura Y, Inoue T, Yin F, Tsuzaki K. Science, 2008; 320: 1057

[20] Inoue T, Kimura Y, Ochiai S. Scr Mater, 2011; 65: 552

[21] Jablokov V, Goto D M, Koss D A, McKirgan J B. Mater Sci Eng, 2001; A302: 197

[22] Bandstra J P, Koss D A. Mater Sci Eng, 2001; A319--321: 490

[23] Guo Z, Lee C S, Morris J W. Acta Mater, 2004; 52: 5511

[24] Lambert-Perlade A, Gourgues A F, Pineau A. Acta Mater, 2004; 52: 2337

[25] Miyamoto G, Takayama N, Furuhara T. Scr Mater, 2009; 60: 1113

[26] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279

[27] You Y, Shang C J, Chen L, Subramanian S. Mater Sci Eng, 2012; A546: 111

[28] You Y, Shang C J, Chen L, Subramanian S. Mater Des, 2013; 43: 485

[29] Zhou W, Loh N L. Scr Mater, 1996; 34: 633

[30] Zheng L, Gao S. In: The Development of High Performance Pipeline Steel in China. Beijing: Petroleum Storage & Transformation Committee of China Petroleum Society, 2008: 95

(郑磊, 高珊. 北京管线钢国际研讨会论文集. 北京: 中国石油学会石油储运委员会, 2008: 95)

[31] Li H L, Ji L K. World Iron Steel, 2009; (1): 56

(李鹤林, 吉玲康. 世界钢铁, 2009; (1): 56)

[32] Gao H L. Welded Pipe Tube, 2010; 10(33): 5

(高惠临. 焊管, 2010; 10(33): 5)
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[3] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[4] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[5] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[8] ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials[J]. 金属学报, 2022, 58(11): 1399-1415.
[9] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[10] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[11] WANG Cunyu,CHANG Ying,ZHOU Fengluan,CAO Wenquan,DONG Han,WENG Yuqing. M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility[J]. 金属学报, 2020, 56(4): 400-410.
[12] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[13] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[14] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[15] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
No Suggested Reading articles found!