Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (2): 137-145    DOI: 10.3724/SP.J.1037.2012.00451
Current Issue | Archive | Adv Search |
EBSD STUDIES OF 30MnB5 HOT STAMPING STEEL TEMPERED AT DIFFERENT TEMPERATURE
CHENG Junye, ZHAO Aimin, CHEN Yinli, DONG Rui, HUANG Yao
Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

CHENG Junye, ZHAO Aimin, CHEN Yinli, DONG Rui, HUANG Yao. EBSD STUDIES OF 30MnB5 HOT STAMPING STEEL TEMPERED AT DIFFERENT TEMPERATURE. Acta Metall Sin, 2013, 49(2): 137-145.

Download:  PDF(6662KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Currently, the senior-level hot stamping steels, such as 30MnB5, could not be used widely in automotive body like 22MnB5 hot stamping steel due to its low plasticity and high hydrogen induced cracking sensitivity after hot stamping. However, its good mechanical properties after tempering processes made it suitable for automotive structural parts. In this paper, the 30MnB5 hot stamping steel was quenched and tempered at 200-600℃ for 2 min. The orientation relationship (OR) with parent phase and misorientation evolution of martensite variants were characterized by EBSD. The OR between martensite variants and parent phase was determined by using {100} pole figure of martensite variants inside a single prior austenite grain and the method of pole figure contouring. The results showed that, the OR between martensite variants and parent phase in 30MnB5 hot stamping steel after quenching was closer to N-W OR than K-S OR, and the actual pole points were distributed around the theoretical pole points. The OR between martensite and parent phase variants did not change in the samples tempered at different temperatures for 2 min, but the number of martensite variants inside a single prior austenite grain tended to decrease. The misorientation of martensite variants after quenched and tempered at different temperatures were both mainly distributed in the angle range of less than 5° and more than 50°. As tempering temperature increased, the low angle grain boundaries below 5° were decreased slightly while the high angle grain boundaries above 50° reflected an upward trend, but the former still accounted for a large percentage. These low angle grain boundaries below 5°, mainly existing inside martensite variants and  derived from the misorientation between martensite laths, were the main reason that led to discrete distribution of angles between different martensite variants around theoretical values.

Key words:  30MnB5 hot stamping steel      tempering      EBSD      orientation relationship      misorientation     
Received:  27 July 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00451     OR     https://www.ams.org.cn/EN/Y2013/V49/I2/137

[1] Karbasianm H, Tekkaya A E. J Mater Process Technol, 2010; 210: 2103


[2] Dong W F, Kim H S. Steel Res Int, 2009; 80: 241

[3] Nikravesh M, Naderi M, Akbari G H. Mater Sci Eng, 2012; A540: 24

[4] Abbasi M, Saeed--Akbari A, Naderi M. Mater Sci Eng, 2012; A538: 356

[5] Naderi M, Saeed--Akbari A, Bleck W. Mater Sci Eng, 2008; A487: 445

[6] Lee S J, Ronevich J A, Krauss G, Matlock D K. ISIJ Int, 2010; 50: 294

[7] Wang M Q, Akiyama E, Tsuzaki K. Corros Sci, 2007; 11: 4081

[8] Chen S K, Li Q Y, Miao Z. Rare Met Mater Eng, 2006; 35: 500

(陈绍楷, 李晴宇, 苗壮. 稀有金属材料与工程, 2006; 35: 500)

[9] Naderi M. PhD Dissertation, Nordrhein--Westfalen: RWTH Aachen University, 2007

[10] Suikkanen P P, Cayron C, Anthony J. J Mater Sci Technol, 2011; 27: 920

[11] Hiromoto K, Rintaro U, Masato U. Mater Charact, 2005; 54: 378

[12] Hiromoto K, Rintaro U, Nobuhiro T. Acta Mater, 2006; 54: 1279

[13] Wang S C, Wu Y W, Hua Y. Trans Mater Heat Treat, 2011; 32(1): 43

(王申存, 吴益文, 华沂. 材料热处理学报, 2011; 32(1): 43)

[14] Yang P, Lu F Y, Meng L. Acta Metall Sin, 2010; 46: 657

(杨平, 鲁法云, 孟利. 金属学报, 2010; 46: 657)

[15] Yang P, Lu F Y, Meng L. Acta Metall Sin, 2010; 46: 666

(杨平, 鲁法云, 孟利. 金属学报, 2010; 46: 666)

[16] Wang S C, Li Z C, Yi D Q. J Cent South Univ (Eng Sci), 2011; 42: 2620

(王申存, 李志成, 易丹青. 中南大学学报(自然科学版), 2011; 42: 2620)

[17] Morito S, Huang X, Furuhara T. Acta Mater, 2006; 54: 5323

[18] Xu Z Y. Martensitic Transformation and Martensite. Beijing: Science Press, 1999: 686
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[3] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[4] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[5] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] WU Xiang,ZUO Xiurong,ZHAO Weiwei,WANG Zhongyang. Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel[J]. 金属学报, 2020, 56(2): 129-136.
[8] WANG Zhanhua, HUI Weijun, XIE Zhiqi, ZHANG Yongjian, ZHAO Xiaoli. Effects of Tempering Temperature on Microstructure and Mechanical Properties of a Mn-Cr Type Bainitic Forging Steel[J]. 金属学报, 2020, 56(11): 1441-1451.
[9] Wensheng XU, Wenzheng ZHANG. An Investigation of the Crystallography of Pearlites Nucleated on the Proeutectoid Cementite[J]. 金属学报, 2019, 55(4): 496-510.
[10] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[11] ZHANG Min,JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel[J]. 金属学报, 2019, 55(11): 1379-1387.
[12] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. 金属学报, 2018, 54(6): 868-876.
[13] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[14] Siqian BAO, Bingbing LIU, Gang ZHAO, Yang XU, Shanshan KE, Xiao HU, Lei LIU. Three-Dimensional Morphologies of Abnormally Grown Goss Oriented Grains in Hi-B Steel During Secondary Recrystallization Annealing[J]. 金属学报, 2018, 54(6): 877-885.
[15] Xiaolin LI, Yang CUI, Baoliang XIAO, Dawei ZHANG, Zhao JIN, Zheng CHENG. Effects of On-Line Rapid Induction Tempering on Pricipitation Strengthening Mechanism of V(C, N) in V-N Microalloyed Steel[J]. 金属学报, 2018, 54(10): 1368-1376.
No Suggested Reading articles found!