Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (1): 123-128    DOI: 10.3724/SP.J.1037.2012.00319
Current Issue | Archive | Adv Search |
MICROMECHANICAL CONSTITUTIVE MODEL FOR PHASE TRANSFORMATION OF NiTi POLYCRYSTAL SMA
 
ZHU Yiguo 1,2, ZHANG Yang1,2, ZHAO Dan1,2
1. Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116023
2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023
Cite this article: 

ZHU Yiguo, ZHANG Yang, ZHAO Dan. MICROMECHANICAL CONSTITUTIVE MODEL FOR PHASE TRANSFORMATION OF NiTi POLYCRYSTAL SMA

 
. Acta Metall Sin, 2013, 49(1): 123-128.

Download:  PDF(663KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Shape memory alloys (SMAs) are new functional material featured by the excellent properties including shape memory effect and superelasticity. NiTi SMAs have some important implications in avitation, medical device,etc. The main objective of this work is to derive a simple Taylor model for NiTi polycrystal.By the assumption of laminated microstructure and perfect interfacial relationship for NiTi single crystal transformation, microscopic strain for each phase can be transformed to overall strain of respective volume element, and expression of phase transformation driving force is derived, then control equation of phase transformation is constructed. Based on the single crystal model, the NiTi polycrystal constitutive model is constructed by Taylor assumption. The model is used to simulate the mechanical response of NiTi polycrystal alloys with strong {111} texture, the results are in agreement with those observed experimentally. The predicted result of NiTi alloy with strong texture shows asymmetry of tension and compression. Simulation results behave softening as the free energy function is non-convex during phase transformation. Transformation stress level rises as temperature is raised. 

Key words:       
Received:  31 May 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00319     OR     https://www.ams.org.cn/EN/Y2013/V49/I1/123

 


[1] Tanaka K. Res Mech, 1986; 18: 251

[2] Liang C, Rogers C. J Intell Mater Syst Strut, 1990; 1: 207

[3] Boyd J, Lagoudas D C. J Intell Mater Syst Strut, 1994; 5: 333

[4] Lagoudas D, Hartl D, Chemisky Y, Machado L, Popov P. Int J Plast, 2012; 32--33: 155

[5] Boyd J, Lagoudas D C. Int J Plast, 1996; 12: 805

[6] Lexcellent C, Leclerq S, Gabry B, Bourbon G. Int J Plast, 2000; 16: 1155

[7] Auricchio F, Reali A, Stefanelli U. Int J Plast, 2007; 23: 207

[8] Zaki W, Moumni Z. J Mech Phys Solids, 2007; 55: 2427

[9] Arghavani J, Auricchio F, Naghdabadi R. Int J Plast, 2011; 27: 940

[10] Sun Q P, Hwang K C. J Mech Phys Solids, 1993; 41: 1

[11] Sun Q P, Hwang K C. J Mech Phys Solids, 1993; 41: 19

[12] Patoor E, Eberhardt A, Berveiller M. J Phys IV, 1996; 6: 277

[13] Gao X, Brinson L C. J Intell Mater Syst Struct, 2002; 13: 795

[14] Thamburaja P, Anand L. J Mech Phys Solids, 2001; 49: 709

[15] Thamburaja P. J Mech Phys Solids, 2005; 53: 825

[16] Peng X, Pi W, Fan J. Int J Plast, 2008; 24: 966

[17] Manchiraju S, Gaydosh D, Benafan O, Noebe R, Vaidyanathan R, Anderson P M. Acta Mater, 2011; 59: 5238

[18] Wang X, Xu B, Yue Z F. Int J Plast, 2008; 24: 1307

[19] Levitas V I, Ozsoy I B. Int J Plast, 2009; 25: 239

[20] Levitas V I, Ozsoy I B. Int J Plast, 2009; 25: 546

[21] Stupkiewicz S, Petryk H. J Mech Phys Solids, 2002; 50: 2303

[22] Patoor E, Lagoudas D C, Entchev P B, Brinson L C, Gao X J. Mech Mater, 2006; 38: 391

[23] Zhu Y G, Zhao D. Acta Mech Sin, 2011; 43: 1117

(朱祎国,赵聃. 力学学报, 2011; 43: 1117)

[24] Brill T, Mittelbach S, Assmus W, Mullner M, Luthit B. J Phys: Condens Matter, 1991; 12: 9621

[25] Shaw J, Kyriakides S. J Mech Phys Solids, 1995; 43: 1243

[26] Feng P, Sun Q P. J Mech Phys Solids, 2006; 54: 1568

 
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[8] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[9] ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. 金属学报, 2022, 58(8): 1065-1071.
[10] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[11] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[12] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[13] YE Junjie, HE Zhirong, ZHANG Kungang, DU Yuqing. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. 金属学报, 2021, 57(6): 717-724.
[14] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[15] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
No Suggested Reading articles found!