Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 621-628    DOI: 10.3724/SP.J.1037.2012.00082
论文 Current Issue | Archive | Adv Search |
EFFECTS OF DEFORMATION AND COOLING RATE ON NANO-SCALE PRECIPITATION IN HOT-ROLLED ULTRA-HIGH STRENGTH STEEL
WANG Xiaonan1,2, DI Hongshuang1, DU Linxiu1
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2. Shagang School of Iron and Steel, Soochow University, Suzhou 215201
Cite this article: 

WANG Xiaonan, DI Hongshuang, DU Linxiu. EFFECTS OF DEFORMATION AND COOLING RATE ON NANO-SCALE PRECIPITATION IN HOT-ROLLED ULTRA-HIGH STRENGTH STEEL. Acta Metall Sin, 2012, 48(5): 621-628.

Download:  PDF(4244KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to control nano-scale precipitation (Nb, Ti)C in hot-rolled 780 MPa grade C-Mn steel micro-alloyed with niobium and titanium for automobile frames, the effects of deformation and cooling rate on nano-scale precipitation were investigated by using the thermal simulation experiment technology, then through the transmission electron microscopy observation and statistical analysis. The result indicated, deformation could significantly improve density of dislocation, subgrain boundary and vacancy etc in microstructure, and promote heterogeneous nucleation of precipitation, and improve nucleation rate of precipitation and decrease the average diameter of precipitation. Deformation could improve vacancy concentration and promoted vacancy nucleation. The induction period of precipitation nucleation decrease with the increase of deformation amount and strain rate, and precipitation more easily to nucleate. Precipitation nucleation driving force was mainly supersaturation of microalloy in undeformed experimental steel, and the nucleation mechanism was mainly homogeneous nucleation. However, the nucleation mechanism was mainly heterogeneous nucleation in deformed experimental steel. In one fixed experimental deformation condition, when the cooling rate below 5℃/s, there was (Nb, Ti)C-PFZ (precipitate free zone) nearby original austenitic grain boundaries or subgrain boundaries, and the width of PFZ at cooling rate of 0.5, 1, 2 and 5℃/s were 46.9, 30.2, 28.1 and 0 nm, respectively, so the width of PFZ decreased with the cooling rate increasing. When the cooling rate reached 15℃/s, the nucleation of precipitation was totally inhibited during cooling process. The number of precipitation along with the cooling rate increases gradually decreases. With the increase of cooling rates, the nucleation zone of precipitation was transferred from austenite to ferrite or bainite, and the average diameter of precipitation was refined. Due to grain boundaries or the subgrain boundaries were main traps for supersaturated vacancy, but the diffusivity of vacancy was high, which made the vacancy concentration nearby grain boundaries or the subgrain boundaries lower than critical vacancy concentration for precipitation nucleation, so precipitate could not nucleate nearby grain boundaries or subgrain boundaries. Due to the diffusivity of vacancy was affected by temperature, when the cooling rate was slow, vacancy had enough time to diffuse and annihilate, which made wide PFZ formed. Whereas, when the cooling rate was high, the diffusivity of vacancy was reducing or disappearing, so the width of PFZ was small. In orde to ensure experimental steel had higher yield strength, austenite zone precipitation and (Nb, Ti)C-PFZ nearby boundaries should be inhabited, so the cooling rate should be more than 15 ℃/s in the practical rolling process.
Key words:  nano precipitation      cooling rate      deformation      microalloy steel      precipitate free zone     
Received:  20 February 2012     
Fund: 

;National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00082     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/621

[1] Jiao Z B, Liu J C.  Mater China, 2011; 30: 6

    (焦增宝, 刘锦川. 中国材料进展, 2011; 30: 6)

[2] Kashima T, Muka Y.  “R$\&$D” Kobe Steel Eng Rep, 2002; 52: 19

[3] Tetsuo S, Yoshimasa F, Shinjiro K.  JFE Technol Rep, 2004; 4: 25

[4] Kazuhiro S, Yoshimasa F, Shinjiro K.  JFE Technol Rep, 2007; 10: 19

[5] Misra R D K, Nathani H, Hartmann J E, Siciliano F.  Mater Sci Eng, 2005; A394: 339

[6] Lu J X, Wang G D.  Iron Steel, 2005; 40: 69

    (陆匠心, 王国栋. 钢铁, 2005; 40: 69)

[7] Sha Q Y, Li G Y, Yan P Y, Ao L G, Hao S.  Mater China, 2011; 30: 23

    (沙庆云, 李桂艳, 严平沅, 熬列格, 郝森. 中国材料进展, 2011; 30: 23)

[8] Zhou J, Kang Y L, Mao X P, Li L J, Lin Z Y.  Iron Steel, 2006; 41(Suppl.): 343

    (周建, 康永林, 毛新平, 李烈军, 林振源. 钢铁, 2006; 41(增刊): 343)

[9] Huang Q Y, Yan H W, Pan Y L, Yang J R.  Min Metall, 2008; 53: 45

(黄庆渊, 颜鸿威, 潘永林, 杨哲人. 矿冶, 2008; 53: 45)

[10] Chen C Y, Yen H W, Kao F H , Li W C, Huang C Y, Yang J R, Wang S H.  Mater Sci Eng, 2009; A499: 162

[11] Wang T P, Kao F H, Wang S H, Yang Z R, Huang C Y, Chen H R.  Mater Lett, 2011; 65: 396

[12] Wang X N, Du L X, Zhang H L, Di H S.  J Iron Steel Res, 2011; 23: 45

     (王晓南, 杜林秀, 张海仑, 邸洪双. 钢铁研究学报, 2011; 23: 45)

[13] Wang X N, Du L X, Xie H, Di H S, Gu D H.  Steel Res Int, 2011; 82: 1417

[14] Okamoto R, Borgenstam A, Agren J.  Acta Mater, 2010; 58: 4783

[15] Jia Z, Misra R D K, O'Malley R, Jansto S J.  Mater Sci Eng, 2011; A528: 7077

[16] Xu G, Gan X L, Ma G J, Luo F, Zou H.  Mater Des, 2010; 31: 2891

[17] Niakan H, Najiafizadeh A.  Mater Sci Eng, 2010; A527: 5410

[18] Olasolo M, Uranga P, Rodriguez-Ibabe J M, Lopez B.  Mater Sci Eng, 2011; A528: 2559

[19] Okamoto R, Borgenstam A, Agren J.  Acta Mater, 2010; 58: 4783

[20] Yong Q L.  Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 145

     (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 145)

[21] He X L, Shang C J, Yang S W, Wang X M, Guo H. High Performance Low Carbon Bainite Steel. Beijing: Metallurgical Industry Press, 2008: 202

     (贺信莱, 尚成嘉, 杨善武, 王学敏, 郭晖. 高性能低碳贝氏体钢. 北京: 冶金工业出版社, 2008: 202)

[22] Manohar P A, Dunne D P, Chandar T, Killmore C R.  ISIJ Int, 1996; 36: 194

[23] Kang Y L, Fu J, Liu D L, Yu H.Control of Microstructure and Properties in Thin Slab Casting and Rolling Steel.Beijing: Metallurgical Industry Press, 2006: 144

     (康永林, 傅杰, 柳得橹, 于浩. 薄板坯连铸连轧钢的组织性能控制. 北京: 冶金工业出版社, 2006: 144)

[24] Dutta B, Sellars C M.  Mater Sci Technol, 1987; 3: 197

[25] Porter D A, Easterlin K E.  Phase Transformations in Metals and Alloys.New York: Van Nostrand Reinhold Company Ltd., 1981: 303

[26] Takashi S, Shuji K, Sadao H, Akio S, Takao O, Kuniaki O.  JFE Technol Rep, 2004; 2: 1
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[10] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[11] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[12] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[13] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[14] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[15] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
No Suggested Reading articles found!