Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (8): 895-906    DOI: 10.3724/SP.J.1037.2012.00132
论文 Current Issue | Archive | Adv Search |
GRAIN BOUNDARY PLANE DISTRIBUTIONS IN 304 STEEL ANNEALED AT HIGH TEMPERATURE AFTER A PARALLEL PROCESSING OF MULTIPLE FORGING AND DIRECT ROLLING
FANG Xiaoying 1, LIU Zhiyong 1, Tikhonova M 2, Belyakov A 2, Kaibyshev R 2, Rohrer G S 3,WANG Weiguo 1
1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255049
2. Belgorod State University, Pobeda 85, Belgorod, 308015, Russia
3. Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Cite this article: 

. GRAIN BOUNDARY PLANE DISTRIBUTIONS IN 304 STEEL ANNEALED AT HIGH TEMPERATURE AFTER A PARALLEL PROCESSING OF MULTIPLE FORGING AND DIRECT ROLLING. Acta Metall Sin, 2012, 48(8): 895-906.

Download:  PDF(10008KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is well–recognized that low Σ-CSL boundaries are highly populated in the grain boundary character distribution (GBCD) for austenitic stainless steel (SS) processed by low strain and subsequent annealing. However, large–strain plus annealing typically tends to introducing numerous random high angle grain boundaries (RHABs) instead of producing high fraction of  Σ3, Σ9 and Σ27 boundaries. In this case, the distribution of grain boundary planes of RHABs must be very relevant to the properties of material. The current study is to explore the evolution of GBCD and grain boundary plane distribution (GBPD) in 304 austenitic SS after large strain and subsequent annealing using electron backscatter diffraction (EBSD) and five–parameter analysis (FPA). After solid solution  treatment, 304 steel samples were separately processed by multiple forging (MF) and direct rolling (DR) with true strain ε=2 followed by same annealing at 900℃ for 2—120 min. Then the GBCDs and GBPDs of the two groups of samples were examined. The results show that the total Σ3n (n=1, 2, 3) special boundaries in any sample as processed take a length fraction of lower than 45% out of the entire boundaries, and with annealing proceeding the incoherent Σ3 boundaries tend to be tuned into coherent ones and consequently the summation fractions of Σ9 and Σ27 boundaries decrease accordingly. In the two samples which were separately processed by MF and DR but followed by the same annealing at 900℃ for 120 min, their random boundaries or general high angle boundaries (Σ3n special boundaries filtered) mostly appeare to be the <111>  twist and <110>  tilt boundaries, indicating there exist grain boundary textures (GBT) in both samples. However, in the condition of some misorientations, the GBPDs of random boundaries are quite different in the two samples. For grain boundaries of <111>/30—40? misorientation, more grain boundaries of twist type nearly on the exact {111} plane are found in the specimen processed by DR and annealing for 120 min (DR120) compared to that processed by MF and annealing for 120 min (MF120). For the grain boundaries of <110>/50? misorientation, it was found that most of such boundaries in MF120 are tilt type and positioned on {112}, {113} and {115} planes, whereas those in DR120 are tilt or mixed type positioned on {001}, {111} and {012}. It was suggested that there are distinct effects of pre–processing on the GBPDs of annealed 304 steel.

Key words:  304 stainless steel      grain boundary character distribution      grain boundary plane distribution      grain boundary texture     
Received:  13 March 2012     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50974147 and 51111120089) and Natural Science Foundation of Shandong Province (No.2009ZRB01176)

Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00132     OR     https://www.ams.org.cn/EN/Y2012/V48/I8/895

[1] Shimada M, Kokawa H, Wang Z J, Saro Y S, Karibe I.Acta Mater, 2002; 50: 2331



[2] Lin P, Palumbo G, Erb U, Aust K T. Scr Metall Mater,1995; 33: 1387



[3] Yin Y F, Faulkner R G. Mater Sci Technol, 1997; 21: 123



[4] Watanabe T. Res Mech, 1984; 11: 47



[5] Palumbo G, Lehoceky E M, Lin P. JOM, 1998; 50: 40



[6] Trillo E, Murr L. J Mater Sci, 1998; 33: 1263



[7] Fang X Y, Wang W G, Guo H, Zhang X, Zhou B X. J Iron Steel Res, 2007; 14: 339



[8] Randle V. Scr Mater, 2006; 54: 1011



[9] Poulsen H F, Nielsen S F, Lauridsen E M, Schmidt S, Suter R M, Lienert U, Margulies L, Lorentzen T, Juul J D. J Appl Cryst, 2001; 34: 751



[10] Fu X, Poulsen H F, Schmidt S, Nielsen S F, Lauridsen E M, Juul J D. Scr Mater, 2003; 49: 1093



[11] Groeber M, Ghosh S, Uchic M D, Dimiduk D M. Acta Mater, 2008; 56: 1257



[12] Brahme A, Alvi M H, Saylor D, Fridy J, Rollett A D. Scr Mater, 2006; 55: 75



[13] Rohrer G S, Saylor D M, Dasher B E, Adams B L, Rollett A D, Wynblatt P. J Mater Res, 2004; 95: 197



[14] Saylor D M, Dasher B E, Adams B L, Rohrer G S. Metall Mater Trans, 2004; 35A: 1981



[15] Rohrer G S, Randle V, Kim C S, Hu Y. Acta Mater, 2006; 54: 4489



[16] Kim C S, Hu Y, Rohrer G S , Randle V. Scr Mater, 2005; 52: 633



[17] Saylor D M, Morawiec A, Rohrer G S. Acta Mater, 2003; 51: 3675



[18] Saylor D M, Dasher B E, Sano T, Rohrer G S. J Am Ceram Soc, 2004; 87: 670



[19] Fang X Y,Wang WG, Rohrer G S, Zhou B X. Acta Metall Sin, 2010; 46: 404



(方晓英, 王卫国, Rohrer G S, 周邦新. 金属学报, 2007; 46: 404)



[20] Cai Z X, Wang W G, Fang X Y, Guo H. Acta Metall Sin, 2010; 46: 769



(蔡正旭, 王卫国, 方晓英, 郭红. 金属学报, 2010; 46: 769)



[21] Wang W G, Zhou B X, Rohrer G S, Guo H, Cai Z X. Mater Sci Eng, 2010; A527: 3695



[22] Fang X Y, Wang W G, Guo H, Zhang X, Zhou B X. Acta Metall Sin, 2007; 43: 1239



(方晓英, 王卫国, 郭红, 张欣, 周邦新. 金属学报, 2007; 43: 1239)



[23] Wang W G. Chin J Stereol Image Analy, 2007; 12: 239



(王卫国. 中国体视学与图像分析, 2007; 12: 239)



[24] Randle V, Jones R. Mater Sci Forum, 2010; 638–642:196



[25] Brandon D G. Acta Metall, 1966; 14: 1479



[26] Thomson C B, Randle V. Acta Mater, 1997; 45: 4909



[27] Wang W G, Dai Y, Li J H, Liu B X. Cryst Growth Des, 2011; 11: 2928



[28] Fang X Y, Zhang K, Guo H, Wang W G, Zhou B X. Mater Sci Eng, 2008; A487: 7



[29] Fang X Y, Wang W G, Cai Z X, Qin C X, Zhou B X. Mater Sci Eng, 2010; A527: 1571



[30] Wen Y N, Zhang J M. Solid State Commun, 2007; 144: 163



[31] Hu G X, Cai X, Rong Y H. Fundamental of Materials Science. Shanghai: Shanghai Jiaotong University Press, 2010: 122



(胡赓祥, 蔡旬,戎咏华. 材料科学基础. 上海: 上海交通大学出版社, 2010: 122)

[1] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[2] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[3] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[4] Jixiang CHEN,Weiguo WANG,Yan LIN,Chen LIN,Qianting WANG,Pinqiang DAI. GRAIN BOUNDARY PLANE DISTRIBUTIONS IN RECRYSTALLIZED HIGH PURITY Al AFTER A PARALLEL PROCESSING OF EQUAL CHANNEL ANGULAR PRESSING AND DIRECT ROLLING[J]. 金属学报, 2016, 52(4): 473-483.
[5] Qing ZHAO,Shuang XIA,Bangxin ZHOU,Qin BAI,Cheng SU,Baoshun WANG,Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. 金属学报, 2015, 51(12): 1465-1471.
[6] MA Guangcai, FU Huameng, WANG Zheng, XU Qingliang, ZHANG Haifeng. STUDY ON FABRICATION AND PROPERTIES OF 304 STAINLESS STEEL CAPILLARY TUBES/Zr53.5Cu26.5Ni5Al12Ag3 BULK METALLIC GLASS COMPOSITES[J]. 金属学报, 2014, 50(9): 1087-1094.
[7] ZHU Chuanlin, ZHANG Junbao, CHENG Congqian, ZHAO Jie. INFLUENCE OF DEFORMATION TEMPERATURE ON HOT DEFORMATION BEHAVIOR OF COLD SPRAYED 304 STAINLESS STEEL COATING MATERIAL[J]. 金属学报, 2013, 49(10): 1275-1280.
[8] DU Nan TIAN Wenming ZHAO Qing CHEN Sibing. PITTING CORROSION DYNAMICS AND MECHANISMS OF 304 STAINLESS STEEL IN 3.5%NaCl SOLUTION[J]. 金属学报, 2012, 48(7): 807-814.
[9] HU Changliang XIA Shuang LI Hui LIU Tingguang ZHOU Bangxin CHEN Wenjue. EFFECT OF GRAIN BOUNDARY NETWORK ON THE INTERGRANULAR STRESS CORROSION CRACKING OF 304 STAINLESS STEEL[J]. 金属学报, 2011, 47(7): 939-945.
[10] CAI Zhengxu WANG Weiguo FANG Xiaoying GUO Hong. EFFECT OF GRAIN SIZE ON THE GRAIN BOUNDARY CHARACTER DISTRIBUTIONS OF COLD ROLLED AND ANNEALED PURE COPPER[J]. 金属学报, 2010, 46(7): 769-774.
[11] FANG Xiaoying WANG Weiguo Rohrer G S ZHOU Bangxin. GRAIN BOUNDARY PLANE DISTRIBUTIONS IN THE COLD–ROLLED AND ANNEALED FERRITIC STAINLESS STEEL[J]. 金属学报, 2010, 46(4): 404-410.
[12] CHENG Xiaojuan WANG Hong KANG Guozheng DONG Yawei LIU Yujie. STUDY ON STRAIN--INDUCED MARTENSITE TRANSFORMATION OF 304 STAINLESS STEEL DURING RATCHETING DEFORMATION[J]. 金属学报, 2009, 45(7): 830-834.
[13] Gaofei Liang. IN-SITU OBSERVATION OF δ→γ PHASE TRANSFORMATION OF AN AISI304 STAINLESS STEEL[J]. 金属学报, 2007, 43(2): 119-124 .
[14] FANG Xiao-Ying. 3n special boundary distributions of the cold-rolled and annealed 304 stainless steel[J]. 金属学报, 2007, 43(12): 1239-1244 .
[15] Gaofei Liang. IN-SITU OBSERVATION OF NUCLEATION AND GROWTH OF HIGH-TEMPERATURE δ PHASE DURING AUSTENITE → FERRITE+LIQUID PHASE TRANSFORMATION IN AN AISI304 STAINLESS STEEL[J]. 金属学报, 2006, 42(8): 805-809 .
No Suggested Reading articles found!