Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 420-426    DOI: 10.3724/SP.J.1037.2011.00666
论文 Current Issue | Archive | Adv Search |
ELECTROCHEMICAL STUDY ON CORROSION BEHAVIORS OF MILD STEEL IN A SIMULATED TIDAL ZONE
MU Xin, WEI Jie, DONG Junhua, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science,Shenyang 110016\par
Cite this article: 

MU Xin, WEI Jie, DONG Junhua, KE Wei. ELECTROCHEMICAL STUDY ON CORROSION BEHAVIORS OF MILD STEEL IN A SIMULATED TIDAL ZONE. Acta Metall Sin, 2012, 48(4): 420-426.

Download:  PDF(3759KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The environment of the tidal zone is very complex. And the dry-wet alternation and interaction of sea erosion leads to serious corrosion of metal materials, making it difficult to adopt protective measures. Therefore, it is of great significance to study the corrosion and protection of metal materials in the tidal zone. Corrosion weight loss results showed that the corrosion behaviors of metal in different regions of tidal zone were altered, but the corrosion mechanism of metal materials in the tidal zone is not obvious. In order to study the corrosion mechanism of tidal corrosion, without considering the seawater splashing effect, a corrosion experimental trough was designed to simulation the tidal zone and immersion zone, and the corrosion behaviors of Q235B mild steel (designated) in it were monitored in situ by the potentiostat and electrochemical workstation. The results showed that the corrosion behaviors of Q235B steel at diverse positions are not the same. The corrosion rate of Q235B steel in the mid tide zone and low tide zone is higher than the highest tide zone and immersion zone. In a tidal range fluctuation cycle, the open-circuit potential variation law of the Q235B steel is related with the dry/wet state of the metal surface and the cathode/anode reactions. In the long term tidal corrosion process, the open-circuit potential variation of Q235B steel is related with the thickness of the rust layer.
Key words:  simulation      tidal corrosion      mild steel      open-circuit potential     
Received:  25 October 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00666     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/420

[1] Xia L T, Huang G Q.  China Foundry Machine Technol,2002; (6): 1

    (夏兰廷, 黄桂桥. 中国铸造装备与技术, 2002; (6): 1)

[2] Jeffrey R, Melchers R E.  Corrosion, 2009; 65: 695

[3] Jeffrey R, Melchers R E.  Corrosion, 2007; 63: 872

[4] Al-Fozan S A, Malik A U.  Desalination, 2008; 228: 61

[5] LaQue F L.  Proc ASTM Corrosion Testing, PA: ASTM International, 1951: 495

[6] Larrabee C A.  Corrosion, 1958; 14: 501t

[7] Southwell C R, Bultman J D, Hummer C W.  Seawater Corrosion Handbook,NJ: Noyes Data Corp., 1979: 1

[8] Takamara A, Arakawa K, Fujiwara F, Hirose H. Trans. Iron Steel Inst Jpn, 1971; 11: 299

[9] Farro N W, Veleva L, Aguilar P.  215th ECS Meeting, 2009: 1

[10] Huang G Q.  Corros Prot, 2000; 21(1): 8

     (黄桂桥. 腐蚀与防护, 2000; 21(1): 8)

[11] Lou Y N, Song S Z, Jin W X, Yin L H.  J Chem Ind Eng,2008; 59: 2864

     (雒娅楠, 宋诗哲, 金威贤, 尹立辉. 化工学报, 2008; 59: 2864)

[12] Lou Y N.  PhD Thesis, Tian Jing University, 2007

     (雒娅楠. 天津大学博士论文, 2007)

[13] Gao Z P, Yang F Y, Zhang J L, Hou B R.  Chin Pat, 2252989, 1997

     (高振泮, 杨芳英, 张经磊, 侯宝荣. 中国专利, 2252989, 1997)

[14] Hou B R.  Marine Corrosion and Protection. Beijing: Science Press,1997: 59

     (侯宝荣. 海洋腐蚀与防护. 北京: 科学出版社, 1997: 59)

[15] Wang S T, Gao K W.  Int J Mineral Metall Mater, 2009; 16: 58

[16] Matsushima R, translated by Jing Y K.  Low-alloy Corrosion Resistant Steel Development and Research. Beijing: Metallurgical Industry Press, 2004: 230

     (松岛岩著, 靳裕康译, 低合金耐蚀钢开发、发展及研究. 北京:冶金工业出版社, 2004: 230)

[17] Moller H, Boshoff E T, Froneman H.  J S Afr Inst Min Metall,2006; 106: 585

[18] Yamashita M, Miyuki H, Matsuda Y, Nagano H, Misawa T. Corros Sci, 1994; 36: 283

[19] Hou B R, Zhang J L.  Br Corros J, 2001; 36: 310

[20] Hao L, Zhang S X, Dong J H, Ke W.  Corros Sci,2012; 54: 241

[21] Chen X H, Dong J H, Han E H, Ke W.  Mater Prot,2007; 40(10): 19

     (陈新华, 董俊华, 韩恩厚, 柯伟. 材料保护, 2007; 40(10): 19)

[22] Fu X X.  PhD Thesis, Institute of Metal Research Chinese Academy of Sciences, Shenyang, 2011

     (傅欣欣, 中国科学院金属研究所博士论文, 沈阳, 2011)
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[5] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[7] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[9] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[10] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[11] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[12] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[13] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[14] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[15] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
No Suggested Reading articles found!