Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 427-434    DOI: 10.3724/SP.J.1037.2011.00646
论文 Current Issue | Archive | Adv Search |
TYPE IV CREEP RUPTURE CHARACTERISTICS OF P92 STEEL WELDMENT
WANG Xue1, PAN Qiangang2, TAO Yongshun2, ZHANG Yinglin1,ZENG Huiqiang2,LIU Hong2
1. School of Power and Mechanics, Wuhan University, Wuhan 430072
2. Dongfang Electric Corporation, Dongfang Boiler Group Co Ltd.,  Zigong 643001
Cite this article: 

WANG Xue1, PAN Qiangang2, TAO Yongshun2, ZHANG Yinglin1,ZENG Huiqiang2,LIU Hong2. TYPE IV CREEP RUPTURE CHARACTERISTICS OF P92 STEEL WELDMENT. Acta Metall Sin, 2012, 48(4): 427-434.

Download:  PDF(1096KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Creep tests at 600~650℃ with applied stresses in the range 100~240MPa and microstructural observations by means of OM, SEM, TEM were conducted on weld joints of P92 steel prepared by SAW process to investigated its characteristics of Type Ⅳ creep rupture. The results showed that Type Ⅳ failure took place at higher temperature and lower stress and tend to have a critical condition expressed by Larson-Miller parameter(L.M.P.)or stress level which values are 35.5 and 120MPa respectively. Type Ⅳ failure showed a lack of ductility and located in the fine grained HAZ(heated to just above AC3)close to intercritical HAZ, where microstructural changes are obviously different from those in the base metal, including formation of equiaxed sub-grain structure, mass precipitation and rapid growth of Laves phases on the grain boundaries during creep exposure, which lead to the Type Ⅳ failure. The size of M23C6 carbide in the AC3 FGHAZ was almost the same as that in the base metal, which has little effect on the failure. Type Ⅳ rupture is a brittle intergranular fracture due to cavity coalescence, which were nucleated at coarse precipitates of Laves phase. The void area ratio of f or AA is employed to quantify grain boundary damage and evaluate Type Ⅳ failure of P92 steel weld joints, and when their values were above 1~1.2% or 0.5%, Type Ⅳ failure would occur.
Key words:  ultra-supercritical unit      P92 steel      creep      type IV cracking      microstucture      void     
Received:  17 October 2011     
ZTFLH: 

TG142

 
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00646     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/427

[1] Jorgen B, Sven K, Rudolph B.  Energy, 2006; 31: 1437

[2] Richardot D, Vaillant J C, Arbab A, Bendick W.  The T92/P92 steel book. 2nd Ed. Boulogne: Vallourec & Mabbesmann tubes, 2002

[3] Shen Q, Liu H G.  Electr Power Constrc, 2010; 31: 71

    (沈琦, 刘鸿国. 电力建设, 2010, 31: 71)

[4] Tu S D, Xuan F Z, Wang W Z.  Acta Metall Sin, 2009; 45: 781

 (涂善东, 轩福贞, 王卫泽. 金属学报, 2009, 45: 781)

[5] Scheller H J, Haigh L, Woitscheck A.  Der Mascginenschaden,1974; 47: 1

[6] Laha K, Chandravathi K S, Rao K B S, Mannan S L, Sastry D H. Metall MaterTrans, 2001; 32A: 115

[7] Tabuchi M, Watanabe T, Kubo K, Matsui M, Kinugawa J, Abe F. J Pressure Vessel Pip, 2001; 78: 779

[8] Kojima T, Hayashi K, Kajita Y.  ISIJ Int, 1995; 35: 1284

[9] Matsui M, Tabuchi M, Watanabe T, Kubo K.  ISIJ Int, 2001; 41: S126

[10] Li D J, Shinozaki K, Kuroki H.  Sci Technol Weld Join, 2003; 8: 296

[11] Abd El--Azim M E, Nasreldin A M, Zies G, Klenk A. Mater Sci Technol, 2005; 21: 779

[12] Watanabe T, Tabuchi M, Yamazaki M, Hongo H, Tanabe T.  J Pressure Vessel Pip, 2006; 83: 63

[13] Albert S K, Matsui M, Watanabe T, Hongo H, Kubo K.  J Pressure Vessel Pip, 2003; 80: 405

[14] Korcakova L, Hald J.  Mater Charact, 2001; 47: 111

[15] Qin G Y.  Quality Metallography. Chendu: Sichuan Publishing House of Science and Technology, 1987: 1

     (秦国友. 定量金相. 成都: 四川科学技术出版社, 1987: 1)

[16] Chen B L.  Imperfection Analysis and Countmeasures for Welding Engineering. Beijing: China Machine Press, 2006: 301

     (陈伯蠡. 焊接工程缺欠分析与对策. 北京: 机械工业出版社, 2006: 301)

[17] Zhang J S.  High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 378

     (张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 378)

[18] Robertson D G, Holdsworth S R.  ECCC Data Sheets 2005. UK: ETD Ltd., 2005: 47

[19] Maruyama K, Sawada K, Koike J.  ISIJ Int, 2001; 41: 641

[20] Komai N, Masuyama F.  ISIJ Int, 2002 ; 42: 1364

[21] Gaffard V, Gourgues-Lorenzon A F, Besson J.  Nucl Eng Des,2005; 235: 2547

[22] Hald J, Korcakova L.  ISIJ Int, 2003; 43: 420

[23] Dimmler G, Weinert P, Kozeschnik E, Cerjak H.  Mater Charact,2003; 51: 341

[24] Hattestrand M, Andren H.  Micron, 2001; 32: 789

[25] Lee J S, Armaki H G, Maruyama K, Muraki T, Asahi H.  Mater Sci Eng, 2006; A428: 270

[26] Peng Z F, Cai L S, Peng F F, Hu Y P, Chen F Y.  Acta Metall Sin,2010; 46: 429

     (彭志方, 蔡黎胜, 彭芳芳, 胡永平, 陈方玉. 金属学报, 2010, 46: 429)

[27] Li D J, Shinozaki K.  Sci Technol Weld Join, 2005; 10: 544

[28] Smith D J, Walker N S, Kimmins S T.  J Pressure Vessel Pip,2003; 80: 617
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[7] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[8] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[9] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[10] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[11] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[12] WU Yupeng, ZHANG Bo, LI Jingming, ZHANG Shuangnan, WU Ying, WANG Yumin, CAI Guixi. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. 金属学报, 2020, 56(8): 1175-1184.
[13] LIU Tian, LUO Rui, CHENG Xiaonong, ZHENG Qi, CHEN Leli, WANG Qian. Investigations on the Accelerated Creep Testing of Alumina-Forming Austenitic Stainless Steel[J]. 金属学报, 2020, 56(11): 1452-1462.
[14] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[15] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
No Suggested Reading articles found!