Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (8): 1061-1066    DOI: 10.3724/SP.J.1037.2011.00072
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF KEYHOLE’S DYNAMIC VARIATION IN CONTROLLED PULSE PAW PROCESS
SUN Junhua, WU Chuansong, QIN Guoliang
Key Lab for Liquid–Solid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061
Cite this article: 

SUN Junhua WU Chuansong QIN Guoliang. NUMERICAL SIMULATION OF KEYHOLE’S DYNAMIC VARIATION IN CONTROLLED PULSE PAW PROCESS. Acta Metall Sin, 2011, 47(8): 1061-1066.

Download:  PDF(779KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  During the controlled pulse key–holing plasma arc welding (PAW), keyhole shape and size change with the welding current dynamically, and undergo variation of the "establishing–expanding–contracting–closing"process. Numerical analysis on such dynamic variation process of keyhole shape and size can provide insight into the process mechanism and basic data for optimizing the process parameters. In this study, a three–dimensional transient model is developed to conduct numerical simulation of welding temperature field, weld pool geometry, and keyhole shape and size in controlled pulse PAW. The keyhole shape and size are computed by analyzing the force–action on the weld pool surface, and two situations are considered to deal with partial keyhole and open keyhole. The dynamic variation features of three–dimensional keyhole shapes in weld pool in a pulse cycle are numerically calculated. Experiments are conducted to validate the numerical simulation result of key–holing duration.
Key words:  controlled pulse key–holing      plasma arc welding      keyhole      dynamic variation      numerical simulation     
Received:  14 February 2011     
ZTFLH: 

TG456.2

 
Fund: 

Supported by National Natural Science Foundation of China (No.50936003) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20090131110023)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00072     OR     https://www.ams.org.cn/EN/Y2011/V47/I8/1061

[1] Wu C S, Jia C B, Chen M A. Weld J, 2010; 89: 225s

[2] Jia C B, Wu C S, Gao J Q. Acta Metall Sin, 2010; 46: 991

(贾传宝, 武传松, 高进强. 金属学报, 2010; 46: 991)

[3] Saedi H R, Unkel W. Weld J, 1988; 67: 247s

[4] Vishnu P R, Easterling K E. Mater Sci Technol, 1991; 7: 649

[5] Wu C S, Zheng W, Wu L. Acta Metall Sin, 1998; 34: 416

(武传松, 郑 炜, 吴 林. 金属学报, 1998; 34: 416)

[6] Reddy A A, Guta B, Achar D R G. Numer Heat Trans, 2002; 41A: 41

[7] Liu W L, Hu S S, Ma L. Trans China Weld Inst, 2006; 26(6): 33

(刘望兰, 胡绳荪, 马立. 焊接学报, 2006; 26(6): 33)

[8] Keanini R G, Rubinsky B. Int J Heat Mass Transfer, 1993; 36: 3283

[9] Nehad A K. Int Commun Heat Mass, 1995; 22: 779

[10] Wu C S, Wang H G, Zhang Y M. Weld J, 2006; 85: 284s

[11] Wu C S, Hu Q X, Gao J Q. Comp Mater Sci, 2009; 46:167

[12] Huo Y S, Wu C S. China Weld, 2009; 18(3): 12

[13] Fan H G, Kovacevic R. J Phys, 1999; 32D: 2902

[14] Wu C S. Welding Thermal Processes and Weld Pool Behaviors. Boca Raton: CRC Press/Taylor & Francis Group, 2010: 49

[15] Wu C S, Chen J, Zhang Y M. Comp Mater Sci, 2007; 39: 635

[16] Sahoo P, Debroy T, Mcnallan M J. Metall Mater Trans, 1988; 19B: 483
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[11] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[12] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[13] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[14] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
[15] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
No Suggested Reading articles found!