Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (6): 697-705    DOI: 10.3724/SP.J.1037.2010.00705
论文 Current Issue | Archive | Adv Search |
EFFECT OF HYDROSTATIC PRESSURE ON THE CORROSION BEHAVIORS OF TWO LOW ALLOY STEELS
LIU Jie 1, LI Xiangbo 2, WANG Jia 1,3
1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100
2. Science and Technology on Marine Corrosion and Protection Laboratory, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101
3. State Key Laboratory for Corrosion and Protection, Shenyang 110016
Cite this article: 

LIU Jie LI Xiangbo WANG Jia. EFFECT OF HYDROSTATIC PRESSURE ON THE CORROSION BEHAVIORS OF TWO LOW ALLOY STEELS. Acta Metall Sin, 2011, 47(6): 697-705.

Download:  PDF(2693KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this paper, the effect of hydrostatic pressure on the corrosion behaviors of two steels was investigated by weight loss test, electrochemical measurements, rust layer analysis and morphology observation in natural seawater environment with high–pressure in lab. The results showed that X steel was inclined to being corroded. With the increase of hydrostatic pressure, the corrosion resistance of two steels were deteriorated, which were attributable to the increase of the anodic reaction rate. Hydrostatic pressure had little effect on oxygen diffusion reductin process of X steel. Howeve, the cathodic current density of Y steel under higher hydrostatic pressure decreased because the coosion products were directly involved in cathodic reduction reaction. And with the increase of hydrostatic pressure, the morphology of two steels changed significantly and dfferently. Under high pressure, some shallo–dish shape localized corrosion appeared on the surface of X steel whereas on the surface of Y steel some tunnel localized crrsion appeared.
Key words:  hydrostatic pressure of seawater      low alloy steel      weight loss test      elctrochemical measurements      rust layer analysis      mrphology observation     
Received:  29 December 2010     
ZTFLH: 

TG172.82

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00705     OR     https://www.ams.org.cn/EN/Y2011/V47/I6/697

[1] Wang J, Meng J, Tang X, Zhang W. J Chin Soc Corros Prot, 2007; 27: 1

(王佳, 孟洁, 唐晓, 张伟. 中国腐蚀与防护学报, 2007; 27: 1)

[2] Guo W M, Li W J. Equip Enviro Eng, 2006; 3: 60

(郭为民, 李文军. 装备环境工程, 2006; 3: 60)

[3] Xu L K, Li W J, Chen G Z. Mari Sci, 2005; 29: 1

(许立坤, 李文军, 陈光章. 海洋科学, 2005; 29: 1)

[4] Guo W M, Li W J, Chen G Z. Equip Enviro Eng, 2006; 3: 10

(郭为民, 李文军, 陈光章. 装备环境工程, 2006; 3: 10)

[5] Schumacher M. Seawater Corrosion Handbook, New Jersey: Noyes Data Corporation, 1979: 107

[6] Dexter S. Corrosion, 1980; 36: 423

[7] Sawant S, Wagh A. Corros Prevent Contr, 1990; 37: 154

[8] Venkatesan R, Venkatasamy M, Bhaskaran T, Dwarakadasa E. Br Corros, 2002; 37: 257

[9] Chen S, Hartt W, Wolfson S. Corrosion, 2003; 59: 721

[10] Beccaria A M, Poggi G, Castello G. Br Corros, 1986;21: 19

[11] Beccaria A M, Poggi G, Gingaud D, Castello P. Br Corros,1994; 29: 65

[12] Beccaria A M, Poggi G, Arfelli M, Mattongno D. Corros Sci, 1993; 34: 989

[13] Chen S, Hartt W. Corrosion, 2002; 58: 38

[14] Beccaria A M, Poggi G, Gingaud D, Castello G. Br Corros, 1995; 30: 283

[15] Liu B, Cong Y, Zhang T, Shao Y W, Meng G Z,Wang F H. Corros Sci Prot Technol, 2009; 21: 5

(刘斌, 丛园, 张涛, 邵亚薇, 孟国哲, 王福会. 腐蚀科学与防护技术, 2009; 21: 5)

[16] Zhang T, Yang Y G, Shao Y W. Electrochim Acta, 2009; 15: 3915

[17] Yang Y G, Zhang T, Shao Y W, Meng G Z, Wang F H. Corros Sci, 2010; 52: 2697

[18] Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM Standard G31, 1999

[19] Raman A, Kuban B, Razvan A. Corros Sci, 1991; 31: 1295

[20] Dunnwald J, Otto A. Corros Sci, 1989; 29: 1167

[21] Hu T, Lu X, Yan Y, Fu Y Y, Zhang H, Zhang S L. Spectrosc Spectr Anal, 2004; 24: 1072

(胡涛, 路欣, 阎研, 傅云义, 张 酣, 张树霖. 光谱学与光谱分析, 2004; 24: 1072)

[22] Xiao H, Wang S, Huang Z Z, Lin D Y. J Univ Sci Technol Beijing, 1997; 9: 476

(肖珩, 汪崧, 黄震中, 林定一. 北京科技大学学报, 1997; 9: 476)

[23] Li Y T, Li T X, Hou B R, Zhang J L. Oceanol Limnol Sin, 1998; 29: 651

(李言涛, 李延旭, 侯保荣, 张经磊. 海洋与湖沼, 1998; 29: 651)

[24] Antony H, Perrin S, Dillmann Ph, Legrand L, Chauss´e A. Electrochim Acta, 2007; 52: 7754

[25] Stratmann M, M¨uller J. Corros Sci, 1994; 36: 327

[26] Stratmann M, Hoffmann K. Corros Sci, 1989; 29: 1329

[27] Stratmann M, Streckel H. Corros Sci, 1990; 30: 697
[1] Jianan ZOU, Xiaolu PANG, Kewei GAO. Crevice Corrosion of X70 and 3Cr Low Alloy Steels Under Supercritical CO2 Condition[J]. 金属学报, 2018, 54(4): 537-546.
[2] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[3] Yunfei LU,Junhua DONG,Wei KE. EFFECTS OF SO42- ON THE CORROSION BEHAVIOR OF NiCu LOW ALLOY STEEL IN DEAERATED BICARBONATE SOLUTIONS[J]. 金属学报, 2015, 51(9): 1067-1076.
[4] Xiaolin LI,Zhaodong WANG,Xiangtao DENG,Yujia ZHANG,Chengshuai LEI,Guodong WANG. EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL[J]. 金属学报, 2015, 51(7): 784-790.
[5] LU Yunfei, YANG Jingfeng, DONG Junhua, KE Wei. THE CORROSION BEHAVIOUR OF NiCu LOW ALLOY STEEL IN A DEAERATED BICARBONATE SOLUTION CONTAINING Cl- IONS[J]. 金属学报, 2015, 51(4): 440-448.
[6] WU Xinqiang, TAN Jibo, XU Song, HAN En-Hou, KE Wei. CORROSION FATIGUE MECHANISM OF NUCLEAR-GRADE LOW ALLOY STEEL IN HIGH TEMPERATURE PRESSURIZED WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL[J]. 金属学报, 2015, 51(3): 298-306.
[7] Pingguang XU,Jiang YIN,Shuyan ZHANG. TENSILE DEFORMATION BEHAVIOR OF HYDROGEN CHARGED ULTRAHIGH STRENGTH STEEL STUDIED BY IN SITU NEUTRON DIFFRACTION[J]. 金属学报, 2015, 51(11): 1297-1305.
[8] XU Qiufa, PANG Xiaolu, LIU Quanlin, GAO Kewei. CREVICE CORROSION OF LOW ALLOY STEEL AND CARBON STEEL IN THE SIMULATED GROUNDWATER AT 90 ℃[J]. 金属学报, 2014, 50(6): 659-666.
[9] FANG Yupei, XIE Zhenjia, SHANG Chengjia. EFFECT OF INDUCTION TEMPERING ON CARBIDE PRECIPITATION BEHAVIOR AND TOUGHNESS OF A 1000 MPa GRADE HIGH STRENGTH LOW ALLOY STEEL[J]. 金属学报, 2014, 50(12): 1413-1420.
[10] HAN En--Hou. RESEARCH TRENDS ON MICRO AND NANO--SCALE MATERIALS DEGRADATION IN NUCLEAR POWER PLANT[J]. 金属学报, 2011, 47(7): 769-776.
[11] YU Quancheng WANG Zhenyao WANG Chuan. CORROSION BEHAVIORS OF LOW ALLOY STEEL AND CARBON STEEL DEPOSITED WITH NaCl AND NaHSO3 UNDER DRY/HUMID ALTERNATIVE CONDITION[J]. 金属学报, 2010, 46(9): 1133-1140.
[12] WANG Lijun CAI Qingwu YU Wei WU Huibin LEI Aidi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA–HIGH STRENGTH LOW ALLOY STEEL[J]. 金属学报, 2010, 46(6): 687-694.
[13] LI Yiyi FAN Cungan RONG Lijian YAN Desheng LI Xiuyan. HYDROGEN EMBRITTLEMENT RESISTANCE OF AUSTENITIC ALLOYS AND ALUMINIUM ALLOYS[J]. 金属学报, 2010, 46(11): 1335-1346.
[14] TAO Peng ZHANG Chi YANG Zhigang TAKEDA Hiroyuki. EVOLUTION OF SECOND PHASE IN 2.25Cr-1Mo-0.25V STEEL WELD METAL DURING HIGH TEMPERATURE TEMPERING[J]. 金属学报, 2009, 45(1): 51-57.
[15] ZHAO Lin; ZHANG Xudong; CHEN Wuzhu. Toughness Of Heat--Affected Zone Of 800 MPa Grade Low Alloy Steel[J]. 金属学报, 2005, 41(4): 392-396 .
No Suggested Reading articles found!