Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (6): 687-694    DOI: 10.3724/SP.J.1037.2009.00855
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA–HIGH STRENGTH LOW ALLOY STEEL
WANG Lijun; CAI Qingwu; YU Wei; WU Huibin; LEI Aidi
National Engineering Research Center for Advanced Rolling Technology; University of Science and Technology Beijing;
Beijing 100083
Download:  PDF(3201KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel sort of 1500 MPa grade ultra–high strength low alloy structural steel with multi–element of Si–Mn–Cr–Ni–Mo was designed. Effects of four different processes of TMCP (thermo–mechanical controlled processing), controlled rolling+air–cooled, controlled rolling + direct quenching and controlled rolling+direct quenching+tempering at 250℃ on the microstructure and mechanical properties were investigated. The results indicate that the directly quenched steel has a maximum tensile strength of 1890 MPa, yield strength of 1280 MPa and elongation of 13%. After tempered at 250 ℃ for 30 min, the tensile strength of the steel decreased to 1820 MPa, while the yield strength increased to 1350 MPa, which is ascribed to the comprehensive effect of the softening mechanism due to the recoverof dislocation sub–structure and the strengthening mechanism due to the decomposition of retained austenite and "–carbide precipitation. Duplex phase microstructure involving lath bainite, martensite segmented by bainite, and retained austenite was obtained by the process of air–cooling and TMCP, so that it has excellent strength and plasticity. Carbon diffusion phenomenon exists in the quenching process of low–carbon steel. Both the decomposition of retained austenite and the carbon partitioning into austenite from martensite or bainite were found during tempering process. The paper demonstrates that the precipitation particles of cubic structure nucleated in austenite, growing up  and coarsning uring the whole cooling process. Futhermore, the emergence of a lage number of second–phasprecipitation cores was not found in martensite or bainite after phase tansformation.

Key words:  ultra-high strength low alloy steel      direct quenching      martensite      bainite      retained austenite     
Received:  23 December 2009     
Fund: 

Supported by Project of Scientific and Technical Supporting Program of China during the 11th Five–Year Plan (No.2006BAE03A06)

Corresponding Authors:  WANG Lijun     E-mail:  wangljustb@126.com

Cite this article: 

WANG Lijun CAI Qingwu YU Wei WU Huibin LEI Aidi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA–HIGH STRENGTH LOW ALLOY STEEL. Acta Metall Sin, 2010, 46(6): 687-694.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00855     OR     https://www.ams.org.cn/EN/Y2010/V46/I6/687

[1] Fan C G, Dong H, Yong Q L, Weng Y Q, Wang M Q, Shi J, Hui W J. Mater Mech Eng, 2006; 30: 1
(范长刚, 董瀚, 雍岐龙, 翁宇庆, 王毛球, 时捷, 惠卫军. 机械工程材料, 2006; 30: 1)
[2] Guo J W, Sun J B, Li H B, Rong S F. J Jiamusi Univ, 2002; 20: 23
(郭继伟, 孙建波, 李洪波, 荣守范. 佳木斯大学学报, 2002; 20: 23)
[3] Garrison Jr W M, Maloney J L. Mater Sci Eng, 2005; A403: 299
[4] Maloney J L, Garrison Jr W M. Acta Mater, 2005; 53: 533
[5] Ji G L, Li F G, Li Q H, Li H Q, Li Z. Mater Sci Eng, 2010; A527: 1165
[6] Li J, Guo F, Li Z, Wang J L, Yan M G. J Iron Steel Res Int, 2007; 14: 254
[7] hang L C, Bhadesha H K D H. Mater Sci Eng, 1994; A184: 17
[8] Sule Y S, Kahraman S, Erdinc K. Mater Charact, 2008; 59: 351
[9] Zhirafar S, Rezaeian A, Pugha M. J Mater Process Technol, 2007; 186: 298
[10] Fang H S, Liu D Y, Chang K D, Zhang C, Gu J L, Zhang W Z, Bai B Z, Yang Z G. J Iron Steel Res, 2001; 13(3): 31
(方鸿生, 刘东雨, 常开地, 张驰, 顾家琳, 张文征, 白秉哲, 杨志刚. 钢铁研究学报, 2001; 13(3): 31)
[11] Liu D Y, Fang H S, Bai B Z. Trans Mater Heat Treat, 2002; 23(4): 5
(刘东雨, 方鸿生, 白秉哲. 材料热处理学报, 2002, 23(4): 57)
[12] Fan C G, Dong H, Shi J, Liu Y L, Yong Q L, Hui W J, Wang M Q, Weng Y Q. Ordnance Mater Sci Eng, 2006;29(2): 31
(范长刚, 董瀚, 时捷, 刘燕林, 雍歧龙, 惠卫军, 王毛球, 翁宇庆. 兵器材料科学与工程; 2006; 29(2): 31)
[13] Wang L D, Ding F C, Wang B M, Zhu M, Zhong Y L, Liang J K. Acta Metall Sin, 2009; 45: 292
(王六定, 丁富才, 王佰民, 朱明, 钟英良, 梁锦奎. 金属学报, 2009; 45: 292)
[14] Gao K, Wang L D, Zhu M, Chen J D, Shi Y J, Kang M K. Acta Metall Sin, 2007; 43: 315
(高宽, 王六定, 朱民, 陈景东, 施易军, 康沫狂. 金属学报, 2007; 43: 315)
[15] Jing C N, Wang Z C, Han F T. Met Heat Treat, 2005; 30: 26
(景财年, 王作成, 韩福涛. 金属热处理, 2005; 30: 26)
[16] Gregg J M, Bhadeshia H K D H. Acta Mater, 1997; 45: 739
[17] Xu Z Y. Shanghai Met, 1995; 171
(徐祖耀. 上海金属, 1995; 17: 1)
[18] Zhou Y, Wu G H.Analysis Methods in Materials Science. 2nd Ed., Harbin: Harbin Institute of Technology Press, 2007: 95
(周玉, 武高辉. 材料分析测试技术. 第二版, 哈尔滨: 哈尔滨工业大学出版社, 2007: 95)
[19] Xu Z Y. Martensitic Transformation and Martensite. 2nd Ed., Beijing: Science Press, 1999: 84
(徐祖耀. 马氏体相变与马氏体. 第二版, 北京: 科学出版社, 1999: 84)
[20] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgy Industry Press, 2006: 225, 247
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 225, 247)

[1] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[2] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[3] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[4] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[5] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[6] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[7] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[8] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[9] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
[10] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[11] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
[12] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
[13] Xiaofeng HU, Haichang JIANG, Mingjiu ZHAO, Desheng YAN, Shanping LU, Lijian RONG. Microstructure and Mechanical Properties of Welded Joint of a Fe-Cr-Ni-Mo Steel with High-Strength and High-Toughness[J]. 金属学报, 2018, 54(1): 1-10.
[14] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[15] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
No Suggested Reading articles found!