Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (1): 81-87    DOI: 10.3724/SP.J.1037.2010.00470
论文 Current Issue | Archive | Adv Search |
SOLIDIFICATION OF Al-Pb MONOTECTIC ALLOY UNDER A STATIC MAGNETIC FIELD
LI Haili, ZHAO Jiuzhou
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LI Haili ZHAO Jiuzhou. SOLIDIFICATION OF Al-Pb MONOTECTIC ALLOY UNDER A STATIC MAGNETIC FIELD. Acta Metall Sin, 2011, 47(1): 81-87.

Download:  PDF(1232KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A static magnetic field has great effect on the solidification structure of monotectic alloys, so the rapid directional solidification in a static magnetic field has great potentials in the manufacturing of monotectic alloys. But up to date little is known about the details of the effect of the magnetic field on the microstructure development during liquid-liquid decomposition. Directional solidification experiments with Al-Pb monotectic alloys in a static magnetic field were carried out, and the effects of the field intensity and the solidification velocity on the solidification microstructure were investigated. Samples with well-dispersed microstructure were obtained. A model was proposed to describe the microstructure evolution in a monotectic alloy solidified in a static magnetic field, which was verified by comparing with experimental results and then applied to investigate the microstructure formation in the unidirectionally solidified Al-Pb alloys. The numerical results indicate that the convective flow of the melt is very strong during the liquid-liquid phase transformation, and leads to a nonuniform distributions of the nucleation rate, number density, average radius and volume fraction of the minority phase droplets along the radial direction of the sample, resulting in serious phase segregation in solidified structure. A static magnetic field can effectively suppress the convective flow and causes a more uniform distributions of the nucleation rate, number density, average radius and volume fraction of the minority phase droplets. The application of a static magnetic field is favorable for the formation of a well dispersed microstructure. The lower the Pb content of the alloy and the higher the solidification velocity, the lower the intensity of the magnetic field needed for obtaining a sample with homogeneous distribution of the minority phase particles.
Key words:  Al-Pb monotectic alloy      static magnetic field      solidification      simulation      liquid-liquid transformation     
Received:  13 September 2010     
Fund: 

Supported by National Natural Science Foundation of China (Nos.u0837601, 51071159 and 51031003)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00470     OR     https://www.ams.org.cn/EN/Y2011/V47/I1/81

[1] Liu Y, Guo J J, Jia J. Foundry, 2000; 49: 11

(刘源, 郭景杰, 贾均. 铸造, 2000; 49: 11)

[2] Inoue A, Yano N. J Mater Sci, 1987; 22: 123

[3] Wecker J, Hehnolt R, Schulta L, Samwer K. Appl Phys Lett, 1993; 52: 1985

[4] Kolbe M, Brillo J, Egry I. Microgravity Sci Technol, 2006; 18: 174

[5] Cao C D, Wei B B. J Mater Sci Technol, 2002; 18: 73

[6] Xu J F, Dai F P,Wei B B. Acta Phys Sin, 2007; 56: 3996

(徐锦峰, 代富平, 魏炳波. 物理学报, 2007; 56: 3996)

[7] Guo J J, Liu Y, Su Y Q. Mater Sci Technol, 2002; 18: 1286

[8] Zhao J Z, Kolbe M, Li H L, Gao J R, Ratke L. Metall Mater Trans, 2007; 38A: 1162

[9] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K. Science, 2002; 297: 990

[10] Zhao J Z. Scr Mater, 2006; 54: 247

[11] Zhang L, Wang E G, Zuo X W, He J C. Acta Metall Sin, 2008; 44: 165

(张林, 王恩刚, 左小伟, 赫冀成. 金属学报, 2008; 44: 165)

[12] Yasuda H, Ohnaka I, Fujimoto S. Mater Lett, 2004; 58: 911

[13] Yasuda H, Ohnaka I, Fujimoto S. Scr Mater, 2006; 54: 527

[14] Zhao J Z, Li H L, Wang Q L, Zhao L, He J. Acta Metall Sin, 2009; 45: 1344

(赵九洲, 李海丽, 王青亮, 赵雷, 何 杰. 金属学报, 2009; 45: 1344)

[15] Zuo X W, Wang E G, Han H, Zhang L, He J C. Acta Metall Sin, 2008; 44: 1219

(左小伟, 王恩刚, 韩欢, 张林, 赫冀成. 金属学报, 2008; 44: 1219)

[16] Decarlo J L, Pirich R G. Metall Trans, 1984; 15A: 2155

[17] Chester W. Scr Mater, 2005; 52: 79

[18] Yang S, Liu W J, Jia J. J Mater Sci, 2001; 36: 5351

[19] Yasuda H, Ohnaka I, Kawakami O. ISIJ Int, 2003; 43: 942

[20] He J, Zhao J Z, Li H L, Zhang X F, Zhang Q X. Metall Mater Trans, 2008; 39A: 1174

[21] Li H L, Zhao J Z. Comput Mater Sci, 2009; 46: 1069

[22] Chester W. J Fluid Mech, 1957; 3: 304

[23] Li H L, Zhao J Z, Zhang Q X, He J. Metall Mater Trans, 2008; 39A: 3308
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[7] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[8] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[9] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[11] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[12] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[13] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[14] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[15] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
No Suggested Reading articles found!