Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 423-428    DOI: 10.3724/SP.J.1037.2010.00537
论文 Current Issue | Archive | Adv Search |
HYDROGEN ABSORPTION BEHAVIOR OF 1500 MPa--GRADE HIGH STRENGTH STEEL 42CrMoVNb
LI Yang, ZHANG Yongjian, HUI Weijun, WANG Maoqiu, DONG Han
National Engineering Research Center of Advanced Steel Technology, Central Iron and Steel Research Institute, Beijing 100081
Cite this article: 

LI Yang ZHANG Yongjian HUI Weijun WANG Maoqiu DONG Han. HYDROGEN ABSORPTION BEHAVIOR OF 1500 MPa--GRADE HIGH STRENGTH STEEL 42CrMoVNb. Acta Metall Sin, 2011, 47(4): 423-428.

Download:  PDF(844KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Hydrogen absorption behaviors of a newly developed 1500 MPa-grade high strength steel 42CrMoVNb at different austenitizing temperatures and tempering temperatures were studied using cathodic charging and hydrogen thermal desorption analysis, which were also compared with commercial structural steel 42CrMo. The results show that the hydrogen escape peak temperatures (θp) in hydrogen evolution curves of hydrogen charged 42CrMoVNb specimens are between 200 ℃ to 300 ℃ both at as-quenched condition and as-tempered condition. The absorbed hydrogen content of 42CrMoVNb specimen increases slowly with increasing tempering temperature up to 500 ℃. When the tempering temperature exceeded 500 ℃, the absorbed hydrogen content increases sharply and reaches its peak, 6.6×10-6, for the specimen tempered at 600 ℃, which is 5 times as much as that of the as-quenched specimen. Thereafter the absorbed hydrogen content declines sharply as the tempering temperature was gone up sequentially. When the specimen was tempered at 400 ℃, the absorbed hydrogen content decreases slightly with austenitizing temperature increasing, and in the microstructure no fine dispersed (V, X)C carbide precipitated, while when the specimen was tempered at 600 ℃, the absorbed hydrogen content increases sharply with austenitizing temperature increasing, and more fine dispersed (V, X)C precipitated. These results indicate that fine dispersed (V, X)C precipitate could  be regarded as a strong hydrogen trap, and the trap activation energy, Ea, is equal to about\linebreak 28.7 kJ/mol, which was obtained by change heating rate.
Key words:  42CrMoVNb high strength steel      hydrogen trap      thermal desorption analysis      carbide      heat treatment     
Received:  11 October 2010     
ZTFLH: 

TG111

 
  TG142

 
Fund: 

Supported by National High Technology Research and Development Program of China (No.2009AA033401) and National Key Technology R&D Program of China (No.2007BAE51B03)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00537     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/423

[1] Chu W Y. Hydrogen Damage and Delayed fracture. Beijing: Metallurgy Industry Press, 1988: 86 p

(褚武扬. 氢损伤与滞后断裂. 北京: 冶金工业出版社, 1988: 86)

[2] Shinsaku M. Delayed Fracture. Tokyo: Nikkan Kogyo Shimbun, 1989: 192

(松山晋作. 迟れ破坏. 东京: 日刊工业新闻社, 1989: 192)

[3] Hui W J, Dong H, Weng Y Q. Iron Steel, 2001; 36(3): 69

(惠卫军, 董 瀚, 翁宇庆. 钢铁, 2001; 36(3): 69)

[4] Hasegawa T, Nakahara T, Yamada Y, Nakamura M. Wire J Int, 1992; (8): 49

[5] Kushida T, Matsumoto H, Kuratomi N, Tsumura T, Nakasato F, Kudo T. Tetsu Hagane, 1996; 82: 297

(栉田隆弘, 松本 \ 齐, 仓富直行, 津村辉隆, 中里福和, 工\parbox[t]{0.26cm}{\vspace*{-6.2pt}\hspace*{-1.2pt}

\includegraphics[width=0.23cm]{teng.eps}}\hspace*{0.2pt}赳夫. 铁と钢, 1996; 82: 297)

[6] Takehiro T, Toru H, Kaneaki T. Tetsu Hagane, 2002; 88: 771

(土田武広, 原彻, 津崎蒹彰. 铁と钢, 2002; 88: 771)

[7] Hui W J, Dong H, Weng Y Q. J Iron Steel Res Int, 2003; 10(4): 63

[8] Hui W J, Dong H, Weng Y Q, Shi J. J Iron Steel Res Int, 2005; 12: 43

[9] Hui W J, Dong H, Weng Y Q, Chen S L, Wang M Q. J Iron Steel Res Int, 2002; 9: 40

[10] Qi J Y, Li Y J, Zhou H J. Trans Mater Heat Treat, 1984; (1): 4

(齐靖远, 黎永均, 周惠久. 材料热处理学报, 1984; (1): 4)

[11] Hui W J, Dong H, Weng Y Q, Shi J, Zhang X Z. Acta Metall Sin, 2004; 40: 1274

(惠卫军, 董瀚, 翁宇庆, 时捷, 章晓中. 金属学报, 2004; 40: 1274)

[12] Li G F, Wu R G, Lei T C. Metall Trans, 1992; 23A: 2879

[13] Hui W J, Weng Y Q, Dong H. High Strength Steels for Fasteners. Beijing: Metallurgical Industry Press, 2009: 124

(惠卫军, 翁宇庆, 董瀚. 高强度紧固件用钢. 北京: 冶金工业出版社, 2009: 124)

[14] Llewellyn D T. Ironmak Steelmak, 1996; 23: 397

[15] Yao D Q, Hu Z Q, Shi C X. Mater Mech Eng, 1989; (1): 1

(姚大千, 胡壮麒, 师昌绪. 机械工程材料, 1989; (1): 1)

[16] Choo W Y, Lee J Y. Metall Trans, 1982; 13A: 135

[17] Choo W Y, Lee J Y. J Mater Sci, 1982; 17: 1930
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[4] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[5] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[6] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[8] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[10] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[11] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[12] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[13] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[14] WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge, XU Yuxin. Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. 金属学报, 2021, 57(8): 1017-1026.
[15] WANG Yue, WANG Jijie, ZHANG Hao, ZHAO Hongbo, NI Dingrui, XIAO Bolv, MA Zongyi. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. 金属学报, 2021, 57(5): 613-622.
No Suggested Reading articles found!