Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (9): 1061-1068    DOI: 10.3724/SP.J.1037.2013.00279
Current Issue | Archive | Adv Search |
DEPENDENCE OF PRIMARY PHASE AND ITS GROWTH DIRECTION ON SOLIDIFICATION PROCESS IN DIRECTIONALLY SOLIDIFIED Ti-46Al-2Cr-2Nb ALLOY
ZHANG Yuan, LI Xinzhong, LIU Guohuai, SU Yanqing, GUO Jingjie, FU Hengzhi
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
Cite this article: 

ZHANG Yuan, LI Xinzhong, LIU Guohuai, SU Yanqing, GUO Jingjie, FU Hengzhi. DEPENDENCE OF PRIMARY PHASE AND ITS GROWTH DIRECTION ON SOLIDIFICATION PROCESS IN DIRECTIONALLY SOLIDIFIED Ti-46Al-2Cr-2Nb ALLOY. Acta Metall Sin, 2013, 49(9): 1061-1068.

Download:  PDF(4912KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GE alloy Ti-(46--48)Al-2Cr-2Nb (atomic fraction) is well known for its high strength and improved ductility. The primary phase and its growth direction are important in controlling the lamellar direction of GE alloys. However it is greatly affected by solidification conditions. In this work, primary phase and its growth direction have been investigated by carrying out Bridgman-type directional solidification with different growth lengths ranging from 5 to 30 mm on Ti-46Al-2Cr-2Nb alloy. It is found that the primary phase is β at the beginning of directional solidification with constant temperature gradient (G=18 K/mm) and growth rate (v=20 μm/s). With the increase of growth length, Al gradually concentrates in the liquid between primary dendrites, which leads to the peritectic reaction L+β→α. With further increase of the growth length, growth competition between primary β phase and peritectic α phase is promoted, leading to gradual transition of primary phases from β  phase to α phase. The growth direction of primary phase in different stages of solidification has been characterized by EBSD analysis. The results indicate that primary β phase has a growth direction parallel to its preferential growth direction <100>β at the initial stage of solidification. By comparing the growth directions of the α2 grains formed from primary β phase and peritectic α phase,it is found that peritectic α phase related to primary β phase by the {110}β //{0001}α orientation relationship. Therefore, as the primary phase has transformed to α phase, the growth direction deviates from its preferential growth direction <0001>α at an angle of 45.9°. The growth direction of α  phase formed after the primary phase transformation is determined not only by the kinetic factors of solidification, but also by the β phase exiting at the beginning of directional solidification. These results provide fundamental references for understanding and controlling the lamellar orientation of GE alloys.

Key words:  TiAl alloy      directional solidification      primary phase      solidification process     
Received:  21 May 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00279     OR     https://www.ams.org.cn/EN/Y2013/V49/I9/1061

[1]Yamaguchi M, Johnson D R, Lee H N, Inui H.Intermetallics, 2000; 8: 511
[2]Kim S E, Lee Y T, Oh M H, Inui H, Yamaguchi M.Intermetallics, 2000; 8: 399
[3]Zollinger J, Lapin J, Daloz D, Combeau H.Intermetallics, 2007; 15: 1343
[4]Johnson D R, Inui H, Muto S, Omiya Y, Yamanaka T.Acta Mater, 2006; 54: 1077
[5]Lapin J, Pelachova T, Domankova M.Intermetallics, 2011; 19: 814
[6]Liu R C, Wang Z, Liu D, Bai C G, Cui Y Y, Yang R.Acta Metall Sin, 2013; 49: 641
(刘仁慈, 王震, 刘冬, 柏春光, 崔玉友, 杨锐.金属学报, 2013; 49: 641)
[7]Yamanaka T, Johnson D R, Inui H, Yamaguchi M.Intermetallics, 1999; 7: 779
[8]Xiao Z X. PhD Dissertation, Beihang University,2011
(肖志霞. 北京航空航天大学博士学位论文, 2011)
[9]Kim M C, Oh M H, Lee J H, Inui H, Yamaguchi M, Wee D M.Mater Sci Eng, 1997; A239-240: 570
[10]Li X Z, Sun T, Yu C X, Su Y Q, Cao Y Z, Guo J J, Fu H Z.Acta Metall Sin, 2009; 45: 1479
(李新中, 孙涛, 于彩霞, 苏彦庆, 曹勇智, 郭景杰, 傅恒志.金属学报, 2009; 45: 1479)
[11]Yang L L, Zheng L J, Xiao Z X, Yan J, Zhang H. Acta Metall Sin, 2010; 46: 879
(杨莉莉, 郑立静, 肖志霞, 闫洁, 张虎. 金属学报, 2010;46: 879)
[12]Xiao Z X, Zheng L J, Yang L L, Yan J, Zhang H. Acta Metall Sin, 2010; 46: 1223
(肖志霞, 郑立静, 杨莉莉, 闫洁, 张虎. 金属学报, 2010;46: 1223)
[13]Thomas M, Bacos M T. High Temp Mater, 2011; 3: 7
[14]Nie G. PhD Dissertation, Harbin Institute of Technology, 2012
(聂革. 哈尔滨工业大学博士学位论文, 2012)
[15] Xiao Z X, Zheng L J, Yan J, Yang L L, Zhang H. J Cryst Growth, 2011; 324: 309
[16]Xiao Z X, Zheng L J, Wang L, Yang L L, Zhang H. J Wuhan Univ Technol, 2011; 26: 197
[17]Fan J L. PhD Dissertation, Harbin Institute of Technology, 2012
(樊江磊. 哈尔滨工业大学博士学位论文, 2012)
[18]Daloz D, Hecht U, Zollinger J, Combeau H, Hazotte A, Zaloznik M. Intermetallics, 2011; 19: 749
[19]Fu H Z, Guo J J, Liu L, Li J S. Directional Solidification and Processing of Advanced Materials. Beijing:Science Press, 2008: 356
(傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京:科学出版社, 2008: 356)
[20]Charpentier M, Daloz D, Gautier E, Lesoult G, Hazotte A,Grange M. Metall Mater Trans, 2003; 34A: 2139
[21]Li Y X, Wu A P. Principle of Materials Processing.Beijing: Tsinghua University Press, 2005: 93
(李言祥, 吴爱萍. 材料加工原理. 北京: 清华大学出版社, 2005: 93)
[22]Glicksman E. Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts. New York: Springer, 2011: 347
[23]Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z.Intermetallics, 2005; 13: 267
[24]Liu D M. PhD Dissertation, Harbin Institute of Technology,2012
(刘冬梅. 哈尔滨工业大学博士学位论文, 2012)
[25]Esaka H, Daimon H, Natsume Y, Ohsasa K, Tamura M G.Mater Trans, 2002; 43: 1312
[26]Singh A K, Muraleedharan K, Banerjee D. Scr Mater,2003; 48: 767

[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[5] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[6] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[7] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[8] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[9] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[10] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[11] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[12] WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. 金属学报, 2020, 56(3): 278-290.
[13] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[14] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[15] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
No Suggested Reading articles found!