Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (3): 340-345    DOI: 10.3724/SP.J.1037.2009.00210
论文 Current Issue | Archive | Adv Search |
DOMAIN SWITCHING AND THE CHANGE IN INDENTATION CRACKS FOR BaTiO3 SINGLE CRYSTAL UNDER THE ELECTRIC FIELD PERPENDICULAR TO THE POLARIZATION
ZHAO Xianwu1); CHU Wuyang2); QIAO Lijie2)
1) Department of Mechanics and Aerospace Engineering; Peking University; Beijing 100871 2) Corrosion and Protection Center; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

ZHAO Xianwu CHU Wuyang QIAO Lijie. DOMAIN SWITCHING AND THE CHANGE IN INDENTATION CRACKS FOR BaTiO3 SINGLE CRYSTAL UNDER THE ELECTRIC FIELD PERPENDICULAR TO THE POLARIZATION. Acta Metall Sin, 2010, 46(3): 340-345.

Download:  PDF(874KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a ferroelectric material, BaTiO3 single crystal has the domain structure which can be changed by the application of mechanical stress and electric field. Therefore, the fracture behavior of the crystal is closely related with the domain switching. To understand the relationship between the fracture behavior and the domain switching clearly, the change of the indentation cracks and domain switching around the indentation under electric field perpendicular to the polarization of the samples were investigated through in situ observations by a differential interference contrast microscopy. The results show that for in-plane polarized sample, after completion of domain switching under the in-plane electric field perpendicular to the polarization of the crystal, the indentation cracks and the domains around the indentation are the same as the new indentation on the sample with new polarization state. In the case of applying in-plane electric field on the anti-plane polarized sample, the speed of the domain switching increases in the initial stage and decreases in the end stage, it has the maximum value as half of the domain switching completed. And the speed fluctuates in the\linebreak first stage.

Key words:  BaTiO3 single crystal      domain switching      indentation crack      fracture     
Received:  07 April 2009     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50632010 and 50572006)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00210     OR     https://www.ams.org.cn/EN/Y2010/V46/I3/340

[1] Yang W. Mechatronic Reliability. Beijing: Tsinghua University Press, 2001: 9
(杨卫. 力电失效学. 北京: 清华大学出版社, 2001: 9)
[2] Hao T H, Gong X, Suo Z. J Mech Phys Solids, 1996; 44: 23
[3] Li J Y, Rogan R C, Ustundag E, Bhattacharya E. Nat Mater, 2005; 4: 776
[4] Rogan R C, Tamura N, Swift G A, Ustundag E. Nat Mater, 2003; 2: 379
[5] Holt M, Hassani K, Sutton M. Phys Rev Lett, 2005; 95: 085504
[6] Park Y B, Ruglovsky J L, Atwater H A. Appl Phys Lett, 2004; 85: 455
[7] Li Z, Foster C M, Dai X H, Chan S K, Lam D J. J Appl Phys, 1992; 71: 4481
[8] Zhao X W, Chu W Y, Su Y J, Li J X, Gao K W, Qiao L J. Acta Metall Sin, 2006; 42: 13
(赵显武, 褚武扬, 宿彦京, 李金许, 高克玮, 乔利杰. 金属学报, 2006; 42: 13)

[9] Yang W, Fang F, Tao M. Int J Solids Struct, 2001; 38: 2203
[10] Busche M J, Hsia K J. Scr Mater, 2001; 44: 207
[11] Fang F, Yang W. Mater Lett, 2002; 57: 198
[12] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1564
[13] Bhushan B, Li X D. Int Mater Rev, 2003; 48: 125
[14] Li X D, Bhushan B. Mater Charact, 2002; 48: 11
[15] Gong J H. Fracture Mechanics of Ceramics. Beijing: Tsinghua University Press, 2001: 88
(龚江宏. 陶瓷材料断裂力学. 北京: 清华大学出版社, 2001: 88)
[16] Yoffe E H. Philos Mag, 1982; 46: 617
[17] Jiang B, Bai Y, Cao J L, Su Y J, Shi S Q, Chu W Y, Qiao L J. J Appl Phys, 2008; 103: 116102

[1] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[2] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[3] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[4] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[5] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[6] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[7] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[9] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[10] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[11] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[12] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[13] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[14] Li ZHOU,Pengfei ZHANG,Quanzhao WANG,Bolü XIAO,Zongyi MA,Tao YU. Multi-Scale Study on the Fracture Behavior of Hot Compression B4C/6061Al Composite[J]. 金属学报, 2019, 55(7): 911-918.
[15] Dongyu HE,Yuxin LIU. PFM Study of the 90° Step-by-Step Domain Switching and the Temperature Effect in 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 Ferroelectric Thin Film[J]. 金属学报, 2019, 55(3): 325-331.
No Suggested Reading articles found!