Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (2): 231-246    DOI: 10.11900/0412.1961.2022.00032
Research paper Current Issue | Archive | Adv Search |
Flow and Solidification Microstructure in Metal Melts Driven by a Combined Magnetic Field
ZHU Rui1, WANG Junjie1, ZHANG Yunhu1(), TIAN Zhichao2, MIAO Xincheng2(), ZHAI Qijie1
1 Center for Advanced Solidification Technology, Shanghai University, Shanghai 200444, China
2 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
Cite this article: 

ZHU Rui, WANG Junjie, ZHANG Yunhu, TIAN Zhichao, MIAO Xincheng, ZHAI Qijie. Flow and Solidification Microstructure in Metal Melts Driven by a Combined Magnetic Field. Acta Metall Sin, 2024, 60(2): 231-246.

Download:  HTML  PDF(5275KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, solidified structures in metal alloys driven by combined electromagnetic fields have received considerable attention. In this study, the effect of combined magnetic field (CMF) formed by pulsed magneto oscillation (PMO) and static magnetic field on the melt flow of Ga-20%In-12%Sn (mass fraction) and solidification structure of Al-7%Si alloy was investigated. Results of numerical simulations and flow experiments show that the flow pattern is single rolled in the direction parallel to the static magnetic field and double rolled in the direction perpendicular to the static magnetic field, which is different from the double-rolled flow pattern of the melt when the PMO is activated alone. The distribution and evolution of the electromagnetic forces in the melt under CMF are numerically simulated to explain the formation of the flow pattern. Moreover, the experimental results of solidification show that the grain size of the CMF-treated Al-7%Si alloy is smaller than that obtained when PMO is applied. Finally, the grain refinement mechanism of the Al-7%Si alloy under the influence of electromagnetic fields is discussed in relation to the effects of induced currents, electromagnetic forces, and forced flow based on the previously proposed mechanism of grain refinement in solidified metals driven by electromagnetic fields.

Key words:  pulsed magneto-oscillation (PMO)      combined magnetic field (CMF)      melt flow pattern      solidification structure     
Received:  25 January 2022     
ZTFLH:  TG290  
Fund: National Natural Science Foundation of China(U1760204);National Natural Science Foundation of China(51974183);Central Guidance on Local Science and Technology Development Fund of Ningxia(2022FRD05007)
Corresponding Authors:  ZHANG Yunhu, associate professor, Tel: 18701896409, E-mail: yunhuzhang@shu.edu.cn;
MIAO Xincheng, professor, Tel: 15541217108, E-mail: miaoxincheng@ustl.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00032     OR     https://www.ams.org.cn/EN/Y2024/V60/I2/231

Fig.1  Schematic of magnetic field measurement setup (h1 and T1 are the height and width of the magnet, respectively; L0is the distance from the magnet to the outer diameter of the coil; H1 and D1 are the height and diameter of the coil, respectively; PMO—pulsed magneto-oscillation)
Fig.2  Waveform of employed PMO (Ip, tp, and f are the peak current, pulse width, and frequency of PMO current, respectively; I—current density; t—time)
Fig.3  Schematic of melt flow measurement setup (H0 and D0 are the height and diameter of the cylindrical container respectively; H2 is the melt height; h is the distance between the bottom of the container and the bottom of the coil; UDV—ultrasound Doppler velocimetry; P1 is the position of the probe at the bottom of the container)
Thermophysical propertyAl-7%SiGa-20%In-12%SnUnit
Liquidus TL61510.5oC
Density ρ24226360kg·m-3
Viscosity υ0.5 × 10-60.34 × 10-6m2·s-1
Electrical conductivity σ3.74 × 1063.27 × 106S·m-1
Relative permeability μr11-
Relative permittivity εr11-
Table 1  Thermophysical properties of Al-7%Si (mass fraction) and Ga-20%In-12%Sn alloys[7]
Fig.4  Numerical simulation geometries of PMO (a) and CMF (b) (CMF—combined magnetic field)
Fig.5  Measured static magnetic field distributions (The two numbers adjacent the up and down arrows in the label are the maximum and minimum values, respectively, the same below)
Fig.6  Measured Bx, By,and Bz (a) and comparison of measured and simulated magnetic field strength along the z direction (b) at the center of the coil under the application of PMO (Ip = 1500A, f = 30 Hz, tp = 3 ms)
Fig.7  Comparison of measured and simulated results of the crests and troughs of Bz along the center axis of the coil under the application of PMO (Ip= 1500A, f = 30 Hz, tp= 3 ms)
Fig.8  Magnetic field distributions in the melt at 0.25tpunder the application of different magnetic fields
Fig.9  Melt flow of Ga-20%In-12%Sn under the impact of PMO (Ip= 1500 A,f = 30 Hz,tp= 3 ms)
Fig.10  Melt flow under the application of CMF
Fig.11  Solidification microstructures of Al-7Si alloy treated by PMO (a, b) and CMF (c, d) with different current peaks (a, c) 2000 A (b, d) 2500 A
Fig.12  Lorentz force (F) distributions in the xz-plane under the application of PMO
Fig.13  Lorentz force distributions in the xz-plane under the application of CMF
Fig.14  Variations of melt average flow velocity (U¯) with time under the application of PMO (a) and CMF (b)
Fig.15  Relationship between the flow velocity Uz and Fz at point P under the application of CMF (a) and its enlarged view of the dotted box in Fig.15a (b)
Fig.16  Induced electric current (J) distributions in the melt under the application of PMO (a) and CMF (b) with current peak of 2500 A
Fig.17  Schematics of magnetic field direction, induced electric current direction, and induced electric current loop area (SP and SC are the areas of the induced current loop under the application of PMO and CMF, respectively )
Fig.18  Lorentz force distributions in the melt under the application of PMO (a) and CMF (b) with current peak of 2500 A
1 Gao S Y, Le Q C, Zhang Z Q, et al. Effects of Al-Al4C3 refiner and ultrasonic field on microstructures of pure Mg [J]. Acta Metall. Sin., 2010, 46: 1495
高声远, 乐启炽, 张志强 等. Al-Al4C3细化剂和超声场对纯Mg组织的影响 [J]. 金属学报, 2010, 46: 1495
doi: 10.3724/SP.J.1037.2010.00230
2 Xiong Y H, Li P J, Yang A M, et al. Effects of foundry variables and refiners on cast structures of superalloy K4169 I. Grain structures and grain refinement mechanisms [J]. Acta Metall. Sin., 2002, 38: 529
熊玉华, 李培杰, 杨爱民 等. 铸造工艺参数和细化剂对K4169高温合金铸态组织的影响 Ⅰ. 晶粒组织及晶粒细化机理 [J]. 金属学报, 2002, 38: 529
3 Venkateswarlu K, Das S K, Chakraborty M, et al. Influence of thermo-mechanical treatment of Al-5Ti master alloy on its grain refining performance on aluminium [J]. Mater. Sci. Eng., 2003, A351: 237
4 Tang P, Li W F, Wang K, et al. Effect of Al-Ti-C master alloy addition on microstructures and mechanical properties of cast eutectic Al-Si-Fe-Cu alloy [J]. Mater. Des., 2017, 115: 147
doi: 10.1016/j.matdes.2016.11.036
5 Wei S B, Wang P, Niu Z P, et al. Development of research on grain refiners for aluminum alloys [J]. Foundry Technol., 2013, 34: 89
卫少波, 王 璠, 牛志鹏 等. 铝合金晶粒细化剂的研究进展 [J]. 铸造技术, 2013, 34: 89
6 Zhang L, Zhan W, Jin F, et al. Microstructure and properties of A357 aluminium alloy treated by pulsed magnetic field [J]. Mater. Sci. Technol., 2018, 34: 698
doi: 10.1080/02670836.2017.1410925
7 Räbiger D, Zhang Y H, Galindo V, et al. The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents [J]. Acta Mater., 2014, 79: 327
doi: 10.1016/j.actamat.2014.07.037
8 Zhang Y H, Räbiger D, Eckert S. Solidification of pure aluminium affected by a pulsed electrical field and electromagnetic stirring [J]. J. Mater. Sci., 2016, 51: 2153
doi: 10.1007/s10853-015-9525-8
9 Ma R, Xiang S Q, Zhang X F. Repairing irreversible hydrogen-induced damages using electric current pulse [J]. Int. J. Hydrogen Energy, 2020, 45: 16909
doi: 10.1016/j.ijhydene.2020.04.148
10 Xiang S Q, Zhang X F. Residual stress removal under pulsed electric current [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 281
doi: 10.1007/s40195-019-00941-z
11 Zhang X F, Qin R S. Separation of electrically neutral non-metallic inclusions from molten steel by pulsed electric current [J]. Mater. Sci. Technol., 2017, 33: 1399
doi: 10.1080/02670836.2016.1275451
12 Zhang L M, Liu H N, Li N, et al. The relevance of forced melt flow to grain refinement in pure aluminum under a low-frequency alternating current pulse [J]. J. Mater. Res., 2016, 31: 396
doi: 10.1557/jmr.2016.17
13 Zhang L M, Li N, Zhang R, et al. Effect of medium-density direct current on dendrites of directionally solidified Pb-50Sn alloy [J]. Mater. Sci. Technol., 2016, 32: 1877
doi: 10.1080/02670836.2016.1149677
14 Zhang L, Guo X, Gao J W, et al. Effect of electromagnetic stirring on microstructure and mechanical properties of TiB2 particle-reinforced steel [J]. Acta Metall. Sin., 2020, 56: 1239
张 林, 郭 晓, 高建文 等. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响 [J]. 金属学报, 2020, 56: 1239
15 Wu C L, Li D W, Zhu X W, et al. Experimental study of macrostructure and segregation by a novel electromagnetic nozzle swirling flow combined with electromagnetic stirring in continuous casting [J]. Metall. Mater. Trans., 2021, 52B: 1207
16 Zou Q C, Tian H, Zhang Z X, et al. Controlling segregation behavior of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring [J]. Metals, 2020, 10: 1129
doi: 10.3390/met10091129
17 Wang F, Eskin D, Mi J W, et al. A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35Cu alloy induced by ultrasonic melt processing [J]. Acta Mater., 2017, 141: 142
doi: 10.1016/j.actamat.2017.09.010
18 Wang G, Wang Q, Balasubramani N, et al. The role of ultrasonically induced acoustic streaming in developing fine equiaxed grains during the solidification of an Al-2 Pct Cu alloy [J]. Metall. Mater. Trans., 2019, 50A: 5253
19 Wang G, Dargusch M S, Qian M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy [J]. J. Cryst. Growth, 2014, 408: 119
doi: 10.1016/j.jcrysgro.2014.09.018
20 Wang H P, Lü P, Cai X, et al. Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state [J]. Mater. Sci. Eng., 2020, A772: 138660
21 Zhao J F, Wang H P, Wei B. A new thermodynamically stable Nb2Ni intermetallic compound phase revealed by peritectoid transition within binary Nb-Ni alloy system [J]. J. Mater. Sci. Technol., 2022, 100: 246
doi: 10.1016/j.jmst.2021.07.001
22 Zhao J F, Wang H P, Zou P F, et al. Liquid structure and thermophysical properties of ternary Ni-Fe-Co alloys explored by molecular dynamics simulations and electrostatic levitation experiments [J]. Metall. Mater. Trans., 2021, 52A: 1732
23 Wang D, Li H Q, Zhang X L, et al. The influence of pulse magnetic field intensity on the morphology and electrochemical properties of NiCoS alloys [J]. Surf. Coat. Technol., 2020, 403: 126406
doi: 10.1016/j.surfcoat.2020.126406
24 Li L, Liang W L, Ban C Y, et al. Effects of a high-voltage pulsed magnetic field on the solidification structures of biodegradable Zn-Ag alloys [J]. Mater. Charact., 2020, 163: 110274
doi: 10.1016/j.matchar.2020.110274
25 Shao Q, Kang J J, Xing Z G, et al. Effect of pulsed magnetic field treatment on the residual stress of 20Cr2Ni4A steel [J]. J. Magn. Magn. Mater., 2019, 476: 218
doi: 10.1016/j.jmmm.2018.12.105
26 Zhang L, Zhou W, Hu P H, et al. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field [J]. J. Alloys Compd., 2016, 688: 868
doi: 10.1016/j.jallcom.2016.07.280
27 Jie J C, Yue S P, Liu J, et al. Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field [J]. Acta Mater., 2021, 208: 116747
doi: 10.1016/j.actamat.2021.116747
28 Teng Y F, Li Y J, Feng X H, et al. Effect of rectangle aspect ratio on grain refinement of superalloy K4169 under pulsed magnetic field [J]. Acta Metall. Sin., 2015, 51: 844
doi: 10.11900/0412.1961.2014.00692
滕跃飞, 李应举, 冯小辉 等. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响 [J]. 金属学报, 2015, 51: 844
29 Zhang K L, Li Y J, Yang Y S. Simulation of the influence of pulsed magnetic field on the superalloy melt with the solid-liquid interface in directional solidification [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1442
doi: 10.1007/s40195-020-01048-6
30 Zhang Y H, Zhong H G, Zhai Q J. Research progress of grain refinement and homogenization of solidified metal alloys driven by pulsed electromagnetic fields [J]. J. Iron Steel Res., 2017, 29: 249
张云虎, 仲红刚, 翟启杰. 脉冲电磁场凝固组织细化和均质化技术研究与应用进展 [J]. 钢铁研究学报, 2017, 29: 249
31 Zi B T, Ba Q X, Cui J Z, et al. Effect of strong pulsed electromagnetic field on metal's solidified structure [J]. Acta Phys. Sin., 2000, 49: 1010
doi: 10.7498/aps
訾炳涛, 巴启先, 崔建忠 等. 强脉冲电磁场对金属凝固组织影响的研究 [J]. 物理学报, 2000, 49: 1010
32 Zhang K L, Li Y J, Yang Y S. Influence of the low voltage pulsed magnetic field on the columnar-to-equiaxed transition during directional solidification of superalloy K4169 [J]. J. Mater. Sci. Technol., 2020, 48: 9
doi: 10.1016/j.jmst.2020.02.009
33 Wang B, Yang Y S, Sun M L. Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1685
doi: 10.1016/S1003-6326(09)60358-7
34 Zhou Q, Chen L P, Yin J. Effects of low-voltage pulsed magnetic field and pouring temperature on solidified structure of Al-4.5%Cu alloy [J]. Adv. Mater. Res., 2011, 399-401: 2139
35 Liao X L, Zhai Q J, Luo J, et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum [J]. Acta Mater., 2007, 55: 3103
doi: 10.1016/j.actamat.2007.01.014
36 Li J, Ma J H, Gao Y L, et al. Research on solidification structure refinement of pure aluminum by electric current pulse with parallel electrodes [J]. Mater. Sci. Eng., 2008, A490: 452
37 Gong Y Y, Cheng S M, Zhong Y Y, et al. The solidification technology of pulsed magneto oscillation [J]. Acta Metall. Sin., 2018, 54: 757
doi: 10.11900/0412.1961.2017.00536
龚永勇, 程书敏, 钟玉义 等. 脉冲磁致振荡凝固技术 [J]. 金属学报, 2008, 54: 757
38 Gong Y Y, Luo J, Jing J X, et al. Structure refinement of pure aluminum by pulse magneto-oscillation [J]. Mater. Sci. Eng., 2008, A497: 147
39 Xu Z S, Li Q X, Liang Z Y, et al. Morphology of the Al-4.5wt%Cu alloy by pulse magneto oscillation treatment [J]. Shanghai Met., 2015, 37(2): 31
徐智帅, 李祺欣, 梁柱元 等. 脉冲磁致振荡下Al-4.5wt%Cu合金微观组织形态 [J]. 上海金属, 2015, 37(2): 31
40 Cheng Y, Xu Z S, Zhou Z, et al. Application of PMO solidification homogenization technology in continuous casting production of GCr15 bearing steel [J]. Shanghai Met., 2016, 38(4): 54
程 勇, 徐智帅, 周 湛 等. PMO凝固均质化技术在连铸GCr15轴承钢生产中的应用 [J]. 上海金属, 2016, 38(4): 54
41 Sun J, Sheng C, Wang D P, et al. Influence of pulsed magneto-oscillation on microstructure and mechanical property of rectangular 65Mn steel ingot [J]. J. Iron Steel Res. Int., 2018, 25: 862
doi: 10.1007/s42243-018-0111-6
42 Hua J S, Zhang Y J, Wu C Y. Grain refinement of Sn-Pb alloy under a novel combined pulsed magnetic field during solidification [J]. J. Mater. Process. Technol., 2011, 211: 463
doi: 10.1016/j.jmatprotec.2010.10.023
43 Tan S L, Zhou Q, Zhang S, et al. Effect of compound magnetic field on solidified structure of Mg97Y2Cu1 alloy reinforced by long period ordered structure [J]. Spec. Cast. Nonferrous Alloys, 2014, 34: 1027
谭水淋, 周 全, 章 森 等. 复合磁场对Mg97Y2Cu1合金凝固组织的影响 [J]. 特种铸造及有色合金, 2014, 34: 1027
44 Hu S P, Chen L P, Zhou Q, et al. Effects of compound magnetic field of pulsed and alternate field on solidified structure and mechanical properties of AZ31 magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 303
胡世平, 陈乐平, 周 全 等. 脉冲-交流磁场对AZ31镁合金组织及力学性能的影响 [J]. 特种铸造及有色合金, 2018, 38: 303
doi: 10.15980/j.tzzz.2018.03.020
45 Zhan W, Jin F, Liu X R, et al. Effects of compound magnetic field on microstructure and mechanical properties of the Mg93Zn6Y1 alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 309
占 维, 金 帆, 刘栩瑞 等. 复合磁场对Mg93Zn6Y1合金凝固组织和力学性能的影响 [J]. 特种铸造及有色合金, 2018, 38: 309
46 Xu Y Y. Fundmental research on magnetohydrodynamics in secondary cooling zone of round billet continuous casting under the application of PMO [D]. Shanghai: Shanghai University, 2021
徐燕祎. PMO在圆坯连铸二冷区中的磁流体力学基础研究 [D]. 上海: 上海大学, 2021
47 Xu Y Y, Zhao J, Ye C Y, et al. Distributions of electromagnetic fields and forced flow and their relevance to the grain refinement in Al-Si alloy under the application of pulsed magneto-oscillation [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 254
doi: 10.1007/s40195-021-01242-0
48 Qin R S, Yan H C, He G H, et al. Exploration on the fabrication of bulk nanocrystalline materials by direct nanocrystallizing method I. Nucleation in disordered metallic media by electropulsing [J]. Chin. J. Mater. Res., 1995, 9: 219
秦荣山, 鄢红春, 何冠虎 等. 直接晶化法制备块状纳米材料的探索──Ⅰ 脉冲电流作用下无序金属介质的成核理论 [J]. 材料研究学报, 1995, 9: 219
49 Wang B, Yang Y S, Zhou J, et al. Structure refinement of pure Mg under pulsed magnetic field [J]. Mater. Sci. Technol., 2011, 27: 176
doi: 10.1179/174328409X428936
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[3] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[4] ZHANG Zhuang, LI Haiyang, ZHOU Lei, LIU Huasong, TANG Haiyan, ZHANG Jiaquan. As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products[J]. 金属学报, 2021, 57(10): 1281-1290.
[5] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[6] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[7] Bo LI,Zhonghua ZHANG,Huasong LIU,Ming LUO,Peng LAN,Haiyan TANG,Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. 金属学报, 2019, 55(6): 762-772.
[8] ZHANG Jianfeng,LAN Qing,GUO Ruizhen,LE Qichi. Effect of Alternating Current Magnetic Field on the Primary Phase of Hypereutectic Al-Fe Alloy[J]. 金属学报, 2019, 55(11): 1388-1394.
[9] WANG Changshuai ZHANG Jun ZOU Minming LIU Lin FU Hengzhi. THE RELAXATION PHENOMENON DURING MELT SUPERHEATING TREATMENT OF DZ125 ALLOY[J]. 金属学报, 2010, 46(6): 674-680.
[10] ZHAO Dongshan; QU Wenbang; WANG Renhui. Polythermal Projection Of Primary Al--Cu--Fe Icosahedral Quasicrystal Phase And The Related Crystal Phase[J]. 金属学报, 2004, 40(1): 14-19 .
No Suggested Reading articles found!