Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (8): 1001-1016    DOI: 10.11900/0412.1961.2024.00063
Overview Current Issue | Archive | Adv Search |
Application of Neutron Characterization Techniques to Metallic Structural Materials
WANG Yanxu1, GONG Wu2, SU Yuhua2, LI Bing1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Japan Proton Accelerator Research Complex Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
Cite this article: 

WANG Yanxu, GONG Wu, SU Yuhua, LI Bing. Application of Neutron Characterization Techniques to Metallic Structural Materials. Acta Metall Sin, 2024, 60(8): 1001-1016.

Download:  HTML  PDF(2415KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The correlation between the atomic structure, microstructure, and macroscopic properties of structural materials remains a core issue in materials research. In recent years, substantial progress has been achieved in constructing accelerator-based neutron sources and related experimental techniques, offering a robust platform for an in-depth understanding of the aforementioned correlation under real-time and in situ conditions. This article reviews the latest advancements in the application of major neutron characterization techniques, including neutron diffraction, Bragg-edge imaging, small-angle neutron scattering, pair distribution function analysis, and quasi-elastic/inelastic neutron scattering, in structural materials. Furthermore, it particularly highlights the origins and evolution of internal stresses during the phase transformations of steels, deformation mechanisms in light metals such as magnesium alloys, and microstructure and residual stress analyses using Bragg-edge imaging. Finally, a brief outlook on future development trends is provided.

Key words:  neutron scattering      phase transformation      elasto-plastic deformation      structural material     
Received:  01 March 2024     
ZTFLH:  TG115  
Fund: National Natural Science Foundation of China(52201029);CSNS Consortium on High-Performance Materials of Chinese Academy of Sciences(JZHKYPT-2021-01)
Corresponding Authors:  LI Bing, professor, Tel: (024)23975272, E-mail: bingli@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00063     OR     https://www.ams.org.cn/EN/Y2024/V60/I8/1001

Fig.1  Evolution of reactor and spallation neutron sources around the world[3] (CP1—Chicago Pile 1, CP2—Chicago Pile 2, X10—X-10 Graphite Reactor, NRX—National Research Experimental, MTR—Materials Testing Reactor, NRU—National Research Universal, HFBR—High Flux Beam Reactor, HFIR—High Flux Isotope Reactor, ILL—Institut Laue-Langevin, ZING-P—Spallation Pulsed Neutron Source Prototype, KENS—KEK Neutron Scattering Research Facility, IPNS—Intense Pulsed Neutron Source, LUJAN—Lujan Center at Los Alamos National Laboratory, ISIS—ISIS Neutron and Muon Source, FRM-Ⅱ—The Research Neutron Source Heinz Maier Leibnitz, OPAL—Open Pool Australian Lightwater Reactor, CARR—China Advanced Research Reactor, SNS-FTS—Spallation Neutron Source-First Target Station, JSNS—Japan Spallation Neutron Source, CSNS—Chinese Spallation Neutron Source, ESS—European Spallation Source, SNS-STS—Spallation Neutron Source-Second Target Station)
Fig.2  Schematics of scattering with scattering vector Q (a), small-angle scattering signal and diffraction spectrum (b), and the time-of-flight diffraction geometry used in the pulsed spallation sources (Scattering vectors Q1 and Q2 are observed by the two detector banks) (c)
Fig.3  Schematic of Bragg-edge (a) and diffraction and transmission spectra of bcc iron (b) (θ—Bragg angle, dhkl —lattice spacing of (hkl) plane, λ—wavelength)
Fig.4  Schematic of neutron transmission spectrum
SourceInstrumentParameterMain sample environment

SNS

VULCAN[12] (ED)

Δd / d = 0.25%

Loading frame (100 kN, 30 Hz)

Furnace (RT-1773 K)

Liquid N2 cooling jar free (80 K-RT)

Additive manufacturing system

VENUS (BEI)Under construction

J-PARC

TAKUMI[13] (ED)

Δd / d = 0.2%

High temperature loading frame (50 kN, RT-1273 K)

Cryogenic loading frame (50 kN, 10 K-RT)

Fatigue machine (60 kN, 30 Hz)

Eulerian cradle

RADEN[14,15] (BEI)

Δλ / λ = 0.2%

SR: 10 μm (camera-type detector), 100 μm (counting-type detector)

Furnace (RT-1173 K)

Polarization analysis system

ISISENGIN-X[4] (ED)Δd / d = 0.26%

High temperature loading frame (100 kN, RT-1373 K)

Cryogenic loading frame (50 kN, 10 K-RT)

IMAT[16] (BEI)

Δλ / λ = 0.7%

SR: 50 μm (camera-type detector), 200 μm (counting-type detector)

Furnace (RT-1273 K)

CSNSEMD[17] (ED)Δd / d = 0.25%

3D scanner

Tensile ring (100 kN, RT-1473 K, 50 Hz)

ERNI[18] (BEI)

Δλ / λ = 0.4%

SR: 15 μm (camera-type detector), 50 μm (counting-type detector)

Fatigue testing (10 kN, 10Hz)

High temperature loading frame (RT-1673 K, 60 kN)

Cryogenic loading frame (6-473 K, 50 kN)

CMRR

RSND[19] (ED)

Δd / d = 0.20%

Flux: 4.7 × 106 n·s-1·cm-2

Stress ring (15 kN)

Furnace (RT-773 K)

Temperature-tension-torsion instrument (173-727 K, 100 kN, 50 N·m)

Cryogenic loading frame (15 K-RT, 2.5 kN)

HETU[20] (ED)

Δd / d = 0.19%

Flux: 3.0 × 107 n·s-1·cm-2

Loading frame (15 kN)

Cyrostat (93 K-RT) and furnace (RT-1273 K)

Eulerian cradle

CARRRSD[21] (ED)

Δd / d = 0.2%

Flux: 2.7 × 107 n·s-1·cm-2

Furnace (RT-1100 K)
ESSD[21] (ED)

Δd / d = 0.2%

Flux: 4.0 × 107 n·s-1·cm-2

Loading frame (100 kN)

Cyrostat (77 K-RT) and furnace (RT-1300 K)

TNI[22] (Imaging)

Δλ / λ = 3%

SR: 50 μm (camera-type detector)

Flux: 1.0 × 109 n·s-1·cm-2

Polarization analysis system

Table 1  Neutron instruments for engineering materials[4,12-22]
Fig.5  Martensite transformation behaviors for a medium-carbon low-alloyed steel during quenching[34]
(a) change in lattice parameter for austenite (Dashed lines are the martensite transfor-mation start temperatures)
(b) change in lattice parameter for martensite
Fig.6  Schematic of the parent {101¯0} grain (left) with associated twin {0002}grain (right) in respect to the loading axis (Q|| and Q are the detector banks along the axial and radial directions, respectively) (a)[60] and changes of the macroscopic strain and diffraction profiles along the axial direction during cycle compression-tension deformation of magnesium alloy showing the twinning and detwinning behavior directly (d-spacing—lattice spacing) (b)[73]
Fig.7  Two-dimensional map of the volume fraction of the martensite phase in a metastable austenitic alloy after sub-zero treatment at various temperatures (1 ch = 0.8 mm. The color code represents the martensite volume fraction)[14]
Fig.8  Residual lattice strains obtained via Bragg-edge imaging[115]
(a) a 2D map of residual lattice strain (ε110)
(b) distributions on the compressive side of the teeth root in the axial direction (RM, RL, and RR represent the right side of the tooth on the middle, the left, and the right sides, respectively)
Fig.9  TEM image, small angle neutron scattering (SANS) profiles, and atom probe tomographic (APT) reconstruction of the differently heat-treated Inconel718 alloys[128] (dΣ / dΩ—absolute macroscopic scattering cross sections)
Fig.10  Inelastic neutron scattering in CrMnFeCoNi alloy[141] (The dynamic structural factor, denoted as S(Q, E),is produced as a function of Q and energy transfer E. T—temperature)
(a, b) S(Q, E) contour plots of CrMnFeCoNi at 6 and 300 K
(c) S(Q, E) contour plot of Ni at 300 K
(d) sliced spectra at 6 Å-1 ≤ |Q| ≤ 10 Å-1
1 Lázpita P, Barandiarán J M, Gutiérrez J, et al. Magnetic moment and chemical order in off-stoichiometric Ni-Mn-Ga ferromagnetic shape memory alloys [J]. New J. Phys., 2011, 13: 033039
2 Willis B T M, Carlile C J. Experimental Neutron Scattering [M]. Oxford: Oxford University Press, 2009: 15
3 Yu X B, Cheng Y Q, Li Y Y, et al. Neutron scattering studies of heterogeneous catalysis [J]. Chem. Rev., 2023, 123: 8638
doi: 10.1021/acs.chemrev.3c00101 pmid: 37315192
4 Haynes R, Paradowska A M, Chowdhury M A H, et al. An inert-gas furnace for neutron scattering measurements of internal stresses in engineering materials [J]. Meas. Sci. Technol., 2012, 23: 047002
5 Gao L, Han S B, Ni H J, et al. Application of neutron imaging in observing various states of matter inside lithium batteries [J]. Natl. Sci. Rev., 2023, 10: nwad238
6 Lehmann E H, Frei G, Vontobel P, et al. The energy-selective option in neutron imaging [J]. Nucl. Instrum. Methods Phys. Res., 2009, 603A: 429
7 Treimer W, Strobl M, Kardjilov N, et al. Wavelength tunable device for neutron radiography and tomography [J]. Appl. Phys. Lett., 2006, 89: 203504
8 Tamaki M. Conceptual monochromatic digital neutron radiography using continuous cold neutron beam [J]. Nucl. Instrum. Methods Phys. Res., 2005, 542A: 32
9 Kamiyama T, Sato H, Miyamoto N, et al. Energy sliced neutron tomography using neutron resonance absorption spectrometer [J]. Nucl. Instrum. Methods Phys. Res., 2009, 600A: 107
10 Tremsin A S, Rakovan J, Shinohara T, et al. Non-destructive study of bulk crystallinity and elemental composition of natural gold single crystal samples by energy-resolved neutron imaging [J]. Sci. Rep., 2017, 7: 40759
doi: 10.1038/srep40759 pmid: 28102285
11 Li B, Zhang Z D. Neutron scattering of magnetocaloric and barocaloric materials [J]. Sci. Sin. Phys., Mech. Astron., 2021, 51: 067505
李 昺, 张志东. 磁卡与压卡材料的中子散射 [J]. 中国科学: 物理学 力学 天文学, 2021, 51: 067505
12 An K, Skorpenske H D, Stoica A D, et al. First in situ lattice strains measurements under load at VULCAN [J]. Metall. Mater. Trans., 2011, 42A: 95
13 Harjo S, Ito T, Aizawa K, et al. Current status of engineering materials diffractometer at J-PARC [J]. Mater. Sci. Forum, 2011, 681: 443
14 Shinohara T, Kai T, Oikawa K, et al. The energy-resolved neutron imaging system, RADEN [J]. Rev. Sci. Instrum., 2020, 91: 043302
15 Isegawa K, Setoyama D, Kimura H, et al. The first application of a Gd3Al2Ga3O12:Ce single-crystal scintillator to neutron radiography [J]. J. Imaging, 2021, 7: 232
16 Kockelmann W, Minniti T, Pooley D, et al. Time-of-flight neutron imaging on IMAT@ISIS: A new user facility for materials science [J]. J. Imaging, 2018, 4: 47
17 Li X H. The new engineering material diffractometer (EMD) at CSNS [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
18 Chen J. Progress of GPPD & ERNI and their applications at CSNS [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
19 Sun G A, Liu D, Gong J, et al. The neutron scattering platform of China Mianyang Research Reactor (CMRR) and recent applications [J]. Sci. Sin. Phys., Mech. Astron., 2021, 51: 092009
孙光爱, 刘 栋, 龚 建 等. 中国绵阳研究堆CMRR中子散射平台及应用 [J]. 中国科学: 物理学 力学 天文学, 2021, 51: 092009
20 Wang B H, Zhong S Y, Lin H, et al. HETU: A new high-resolution stress and texture neutron diffractometer at China Mianyang Research Reactor [J]. J. Appl. Cryst., 2023, 56: 1674
21 Li T F, Wu M M, Jiao X S, et al. Current status and future prospect of neutron facilities at China advanced research reactor [J]. Nucl. Phys. Rev., 2020, 37: 364
李天富, 武梅梅, 焦学胜 等. 中国先进研究堆中子科学平台发展现状及展望 [J]. 原子核物理评论, 2020, 37: 364
22 He L F. The current status of neutron imaging project at CARR [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
23 Onink M, Brakman C M, Tichelaar F D, et al. The lattice parameters of austenite and ferrite in Fe-C alloys as functions of carbon concentration and temperature [J]. Scr. Metall. Mater., 1993, 29: 1011
24 Tomota Y, Gong W, Harjo S, et al. Reverse austenite transformation behavior in a tempered martensite low-alloy steel studied using in situ neutron diffraction [J]. Scr. Mater., 2017, 133: 79
25 Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Mater., 2015, 85: 243
26 Dutta R K, Huizenga R M, Amirthalingam M, et al. In-situ synchrotron diffraction studies on transformation strain development in a high strength quenched and tempered structural steel—Part I. Bainitic transformation [J]. Metall. Mater. Trans., 2014, 45A: 218
27 Lin S, Borgenstam A, Stark A, et al. Effect of Si on bainitic transformation kinetics in steels explained by carbon partitioning, carbide formation, dislocation densities, and thermodynamic conditions [J]. Mater. Charact., 2022, 185: 111774
28 Xu P G, Zhang S Y, Harjo S, et al. Principal preferred orientation evaluation of steel materials using time-of-flight neutron diffraction [J]. Quantum Beam Sci., 2024, 8: 7
29 He S H, He B B, Zhu K Y, et al. Revealing the role of dislocations on the stability of retained austenite in a tempered bainite [J]. Scr. Mater., 2019, 168: 23
30 Zhang S Y, Godfrey E, Kockelmann W, et al. High-tech composites to ancient metals [J]. Mater. Today, 2009, 12: 78
31 Li L, Miyamoto G, Zhang Y J, et al. Quantitative analysis of microstructure evolution, stress partitioning and thermodynamics in the dynamic transformation of Fe-14Ni alloy [J]. J. Mater. Sci. Technol., 2024, 184: 221
doi: 10.1016/j.jmst.2023.10.037
32 Tomota Y, Wang Y X, Ohmura T, et al. In situ neutron diffraction study on ferrite and pearlite transformations for a 1.5Mn-1.5Si-0.2C steel [J]. ISIJ Int., 2018, 58: 2125
33 Plotkowski A, Saleeby K, Fancher C M, et al. Operando neutron diffraction reveals mechanisms for controlled strain evolution in 3D printing [J]. Nat. Commun., 2023, 14: 4950
doi: 10.1038/s41467-023-40456-x pmid: 37587109
34 Wang Y X, Tomota Y, Ohmura T, et al. Real time observation of martensite transformation for a 0.4C low alloyed steel by neutron diffraction [J]. Acta Mater., 2020, 184: 30
35 Aaronson H I, Enomoto M, Lee J K. Mechanisms of Diffusional Phase Transformations in Metals and Alloys [M]. Boca Raton: CRC Press, 2010: 601
36 Liu J B, Chen C X, Feng Q, et al. Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel: An in-situ TEM study [J]. Mater. Sci. Eng., 2017, A703: 236
37 Fukui D, Nakada N, Onaka S. Internal residual stress originated from Bain strain and its effect on hardness in Fe-Ni martensite [J]. Acta Mater., 2020, 196: 660
38 Villa M, Niessen F, Somers M A J. In situ investigation of the evolution of lattice strain and stresses in austenite and martensite during quenching and tempering of steel [J]. Metall. Mater. Trans., 2018, 49A: 28
39 Huyghe P, Caruso M, Collet J L, et al. Into the quenching & partitioning of a 0.2C steel: An in-situ synchrotron study [J]. Mater. Sci. Eng., 2019, A743: 175
40 Wang Y X, Tomota Y, Ohmura T, et al. Evolution of austenite lattice parameter during isothermal transformation in a 0.4 C low alloyed steel [J]. Materialia, 2023, 27: 101685
41 Gong W, Harjo S, Tomota Y, et al. Lattice parameters of austenite and martensite during transformation for Fe-18Ni alloy investigated through in-situ neutron diffraction [J]. Acta Mater., 2023, 250: 118860
42 Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J]. Proc. Roy. Soc., 1957, 241A: 376
43 Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta Metall., 1973, 21: 571
44 Shirai Y, Araki H, Mori T, et al. Positron annihilation study of lattice defects induced by hydrogen absorption in some hydrogen storage materials [J]. J. Alloys Compd., 2002, 330-332: 125
45 Chalermkarnnon P, Araki H, Shirai Y. Excess vacancies induced by disorder-order phase transformation in Ni3Fe [J]. Mater. Trans., 2002, 43: 1486
46 Shibata A, Takeda Y, Park N, et al. Nature of dynamic ferrite transformation revealed by in-situ neutron diffraction analysis during thermomechanical processing [J]. Scr. Mater., 2019, 165: 44
47 Li S L, Li Y, Wang Y K, et al. Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology [J]. Acta Metall. Sin., 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
李时磊, 李 阳, 王友康 等. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价 [J]. 金属学报, 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
48 Schmank M J, Krawitz A D. Measurement of a stress gradient through the bulk of an aluminum alloy using neutrons [J]. Metall. Trans., 1982, 13A: 1069
49 MacEwen S R, Faber J, Turner A P L. The use of time-of-flight neutron diffraction to study grain interaction stresses [J]. Acta Metall., 1983, 31: 657
50 Allen A J, Bourke M A M, Dawes S, et al. The analysis of internal strains measured by neutron diffraction in Al/SiC metal matrix composites [J]. Acta Metall. Mater., 1992, 40: 2361
51 Prangnell P B, Downes T, Withers P J, et al. An examination of the mean stress contribution to the Bauschinger effect by neutron diffraction [J]. Mater. Sci. Eng., 1995, A197: 215
52 Zhai H Y, Liu C H, Shang X Q, et al. Measuring texture-component-dependent stress of CuZn39Pb2 by neutron diffraction [J]. Int. J. Mech. Sci., 2024, 270: 109109
53 Gharghouri M A, Weatherly G C, Embury J D, et al. Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction [J]. Philos. Mag., 1999, 79A: 1671
54 Aizawa K, Gong W, Harjo S, et al. In-situ neutron diffraction study on tensile behavior of LPSO Mg-Zn-Y alloys [J]. Mater. Trans., 2013, 54: 1083
55 Harjo S, Aizawa K, Gong W, et al. Neutron diffraction monitoring of as-cast Mg97Zn1Y2 during compression and tension [J]. Mater. Trans., 2020, 61: 828
56 Zheng R X, Gong W, Du J P, et al. Rediscovery of Hall-Petch strengthening in bulk ultrafine grained pure Mg at cryogenic temperature: A combined in-situ neutron diffraction and electron microscopy study [J]. Acta Mater., 2022, 238: 118243
57 Harjo S, Gong W, Aizawa K, et al. Strengthening of αMg and long-period stacking ordered phases in a Mg-Zn-Y alloy by hot-extrusion with low extrusion ratio [J]. Acta Mater., 2023, 255: 119029
58 Hagihara K, Mayama T, Yamasaki M, et al. Contributions of multimodal microstructure in the deformation behavior of extruded Mg alloys containing LPSO phase [J]. Int. J. Plast., 2024, 173: 103865
59 Muránsky O, Carr D G, Barnett M R, et al. Investigation of deformation mechanisms involved in the plasticity of AZ31 Mg alloy: In situ neutron diffraction and EPSC modelling [J]. Mater. Sci. Eng., 2008, A496: 14
60 Muránsky O, Carr D G, Šittner P, et al. In situ neutron diffraction investigation of deformation twinning and pseudoelastic-like behaviour of extruded AZ31 magnesium alloy [J]. Int. J. Plast., 2009, 25: 1107
61 Muránsky O, Barnett M R, Carr D G, et al. Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission [J]. Acta Mater., 2010, 58: 1503
62 Muránsky O, Barnett M R, Luzin V, et al. On the correlation between deformation twinning and Lüders-like deformation in an extruded Mg alloy: In situ neutron diffraction and EPSC.4 modelling [J]. Mater. Sci. Eng., 2010, A527: 1383
63 Lee S Y, Wang H, Gharghouri M A, et al. Deformation behavior of solid-solution-strengthened Mg-9 wt.% Al alloy: In situ neutron diffraction and elastic-viscoplastic self-consistent modeling [J]. Acta Mater., 2014, 73: 139
64 Gong W, Aizawa K, Harjo S, et al. Deformation behavior of as-cast and as-extruded Mg97Zn1Y2 alloys during compression, as tracked by in situ neutron diffraction [J]. Int. J. Plast., 2018, 111: 288
65 Gong W, Kawasaki T, Zheng R X, et al. Compressive deformation behavior of AZ31 alloy at 21K: An in-situ neutron diffraction study [J]. Scr. Mater., 2023, 225: 115161
66 Harjo S, Gong W, Aizawa K, et al. Effect of extrusion ratio in hot-extrusion on kink deformation during compressive deformation in an αMg/LPSO dual-phase magnesium alloy monitored by in situ neutron diffraction [J]. Mater. Trans., 2023, 64: 766
67 Agnew S R, Brown D W, Tomé C N. Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction [J]. Acta Mater., 2006, 54: 4841
68 Máthis K, Csiszár G, Čapek J, et al. Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured magnesium polycrystals—Comparison of experimental and modeling results [J]. Int. J. Plast., 2015, 72: 127
69 Čapek J, Máthis K, Clausen B, et al. Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium [J]. Acta Mater., 2017, 130: 319
70 Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium [J]. Mater. Sci. Eng., 2005, A399: 1
71 Clausen B, Tomé C N, Brown D W, et al. Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg [J]. Acta Mater., 2008, 56: 2456
72 Agnew S R, Mulay R P, Polesak III F J, et al. In situ neutron diffraction and polycrystal plasticity modeling of a Mg-Y-Nd-Zr alloy: Effects of precipitation on individual deformation mechanisms [J]. Acta Mater., 2013, 61: 3769
73 Gong W, Zheng R X, Harjo S, et al. In-situ observation of twinning and detwinning in AZ31 alloy [J]. J. Magnes. Alloy., 2022, 10: 3418
74 Wu L, Jain A, Brown D W, et al. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A [J]. Acta Mater., 2008, 56: 688
75 Wu L, Agnew S R, Brown D W, et al. Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A [J]. Acta Mater., 2008, 56: 3699
76 Wu W, An K, Huang L, et al. Deformation dynamics study of a wrought magnesium alloy by real-time in situ neutron diffraction [J]. Scr. Mater., 2013, 69: 358
77 Wu W, Qiao H, An K, et al. Investigation of deformation dynamics in a wrought magnesium alloy [J]. Int. J. Plast., 2014, 62: 105
78 Wu W, Liaw P K, An K. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction [J]. Acta Mater., 2015, 85: 343
79 Turner P A, Tomé C N. A study of residual stresses in Zircaloy-2 with rod texture [J]. Acta Metall. Mater., 1994, 42: 4143
80 Agnew S R, Tomé C N, Brown D W, et al. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling [J]. Scr. Mater., 2003, 48: 1003
81 Máthis K, Nyilas K, Axt A, et al. The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction [J]. Acta Mater., 2004, 52: 2889
82 Ungár T, Castelnau O, Ribárik G, et al. Grain to grain slip activity in plastically deformed Zr determined by X-ray micro-diffraction line profile analysis [J]. Acta Mater., 2007, 55: 1117
83 Wang M, Xu X Y, Wang H Y, et al. Evolution of dislocation and twin densities in a Mg alloy at quasi-static and high strain rates [J]. Acta Mater., 2020, 201: 102
84 Tomota Y, Sato S, Harjo S. Recent progress of line-profile analyses for neutron or X-ray diffraction [J]. Tetsu Hagané, 2017, 103: 73
友田陽, 佐藤 成男. . ハルヨステファヌス中性子・X線回折ラインプロファイル解析の最近の進歩 [J]. 鉄と鋼, 2017, 103: 73
85 Li Y Z, Huang M X. A Method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction [J]. Acta Metall. Sin., 2020, 56: 487
doi: 10.11900/0412.1961.2020.00016
李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法 [J]. 金属学报, 2020, 56: 487
doi: 10.11900/0412.1961.2020.00016
86 Xu F, Holt R A, Daymond M R, et al. Development of internal strains in textured Zircaloy-2 during uni-axial deformation [J]. Mater. Sci. Eng., 2008, A488: 172
87 Daymond M R, Holt R A, Cai S, et al. Texture inheritance and variant selection through an hcp-bcc-hcp phase transformation [J]. Acta Mater., 2010, 58: 4053
88 Cai S, Daymond M R, Holt R A. Deformation of high β-phase fraction Zr-Nb alloys at room temperature [J]. Acta Mater., 2012, 60: 3355
89 Long F, Xu F, Daymond M R. Temperature dependence of the activity of deformation modes in an HCP zirconium alloy [J]. Metall. Mater. Trans., 2013, 44A: 4183
90 Abdolvand H, Daymond M R, Mareau C. Incorporation of twinning into a crystal plasticity finite element model: Evolution of lattice strains and texture in Zircaloy-2 [J]. Int. J. Plast., 2011, 27: 1721
91 Warwick J L W, Jones N G, Rahman K M, et al. Lattice strain evolution during tensile and compressive loading of CP Ti [J]. Acta Mater., 2012, 60: 6720
92 Gloaguen D, Oum G, Legrand V, et al. Experimental and theoretical studies of intergranular strain in an alpha titanium alloy during plastic deformation [J]. Acta Mater., 2013, 61: 5779
93 Lee M S, Kawasaki T, Yamashita T, et al. In-situ neutron diffraction study of lattice deformation behaviour of commercially pure titanium at cryogenic temperature [J]. Sci. Rep., 2022, 12: 3719
94 Wang Z Q, Stoica A D, Ma D, et al. Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction: Application to additive manufacturing [J]. Mater. Sci. Eng., 2017, A707: 585
95 Cho K, Morioka R, Harjo S, et al. Study on formation mechanism of {332} <113> deformation twinning in metastable β-type Ti alloy focusing on stress-induced α" martensite phase [J]. Scr. Mater., 2020, 177: 106
96 Kim D K, Woo W, Hwang J H, et al. Stress partitioning behavior of an AlSi10Mg alloy produced by selective laser melting during tensile deformation using in situ neutron diffraction [J]. J. Alloys Compd., 2016, 686: 281
97 Zhang X X, Andrä H, Harjo S, et al. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation [J]. Mater. Des., 2021, 198: 109339
98 Zhang X X, Knoop D, Andrä H, et al. Multiscale constitutive modeling of additively manufactured Al-Si-Mg alloys based on measured phase stresses and dislocation density [J]. Int. J. Plast., 2021, 140: 102972
99 Wang B, He H Y, Naeem M, et al. Deformation of CoCrFeNi high entropy alloy at large strain [J]. Scr. Mater., 2018, 155: 54
100 Wang Y Q, Liu B, Yan K, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
101 He H Y, Naeem M, Zhang F, et al. Stacking fault driven phase transformation in CrCoNi medium entropy alloy [J]. Nano Lett., 2021: 21: 1419
doi: 10.1021/acs.nanolett.0c04244 pmid: 33464087
102 Wei D X, Wang L Q, Zhang Y J, et al. Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys [J]. Acta Mater., 2022, 225: 117571
103 Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction [J]. Acta Mater., 2017, 127: 471
104 Woo W, Jeong J S, Kim D K, et al. Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction [J]. Sci. Rep., 2020, 10: 1350
doi: 10.1038/s41598-020-58273-3 pmid: 31992801
105 Kwon H, Sathiyamoorthi P, Gangaraju M K, et al. High-density nanoprecipitates and phase reversion via maraging enable ultrastrong yet strain-hardenable medium-entropy alloy [J]. Acta Mater., 2023, 248: 118810
106 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
107 Shi Y J, Li S L, Lee T L, et al. In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy [J]. Mater. Sci. Eng., 2020, A771: 138555
108 Naeem M, He H Y, Zhang F L, et al. Cooperative deformation in high-entropy alloys at ultralow temperatures [J]. Sci. Adv., 2020, 6: eaax4002
109 Yamashita T, Koga N, Kawasaki T, et al. Work hardening behavior of dual phase copper-iron alloy at low temperature [J]. Mater. Sci. Eng., 2021, A819: 141509
110 Wang Y X, Gong W, Kawasaki T, et al. In situ neutron diffraction study on the deformation behavior of the plastic inorganic semiconductor Ag2S [J]. Appl. Phys. Lett., 2023, 123: 011903
111 Su Y H, Oikawa K, Harjo S, et al. Time-of-flight neutron Bragg-edge transmission imaging of microstructures in bent steel plates [J]. Mater. Sci. Eng., 2016, A675: 19
112 Su Y H, Oikawa K, Shinohara T, et al. Time-of-flight neutron transmission imaging of martensite transformation in bent plates of a Fe-25Ni-0.4C alloy [J]. Phys. Proc., 2017, 88: 42
113 Santisteban J R, Edwards L, Fitzpatrick M E, et al. Strain imaging by Bragg edge neutron transmission [J]. Nucl. Instrum. Methods Phys. Res., 2002, 481A: 765
114 Tremsin A S, Yau T Y, Kockelmann W. Non‐destructive examination of loads in regular and self-locking Spiralock® threads through energy-resolved neutron imaging [J]. Strain, 2016, 52: 548
115 Su Y H, Oikawa K, Shinohara T, et al. Residual stress relaxation by bending fatigue in induction-hardened gear studied by neutron Bragg edge transmission imaging and X-ray diffraction [J]. Int. J. Fatigue, 2023, 174: 107729
116 Hendriks J N, Gregg A W T, Wensrich C M, et al. Bragg-edge elastic strain tomography for in situ systems from energy-resolved neutron transmission imaging [J]. Phys. Rev. Mater., 2017, 1: 053802
117 Ramadhan R S, Kockelmann W, Minniti T, et al. Characterization and application of Bragg-edge transmission imaging for strain measurement and crystallographic analysis on the IMAT beamline [J]. J. Appl. Cryst., 2019, 52: 351
doi: 10.1107/S1600576719001730
118 Tomota Y, Murakami T, Wang Y X, et al. Influence of carbon concentration and magnetic transition on the austenite lattice parameter of 30Mn-C steel [J]. Mater. Charact., 2020, 163: 110243
119 Su Y H, Oikawa K, Shinohara T, et al. Neutron Bragg-edge transmission imaging for microstructure and residual strain in induction hardened gears [J]. Sci. Rep., 2021, 11: 4155
doi: 10.1038/s41598-021-83555-9 pmid: 33603006
120 Bakhtiari M, Sadeghi F, Sato H, et al. Microstructure and texture analysis of 304 austenitic stainless steel using Bragg edge transmission imaging [J]. J. Appl. Cryst., 2023, 56: 1403
121 Busi M, Kalentics N, Morgano M, et al. Nondestructive characterization of laser powder bed fusion parts with neutron Bragg edge imaging [J]. Addit. Manuf., 2021, 39: 101848
122 Ramadhan R S, Glaser D, Soyama H, et al. Mechanical surface treatment studies by Bragg edge neutron imaging [J]. Acta Mater., 2022, 239: 118259
123 Ito D, Sato H, Odaira N, et al. Spatial distribution and preferred orientation of crystalline microstructure of lead-bismuth eutectic [J]. J. Nucl. Mater., 2022, 569: 153921
124 Oikawa K, Kiyanagi Y, Sato H, et al. Pulsed neutron imaging based crystallographic structure study of a Japanese sword made by sukemasa in the muromachi period [J]. Mater. Res. Proc., 2020, 15: 207
125 Ojima M, Ohnuma M, Suzuki J, et al. Origin of the enhanced hardness of a tempered high-nitrogen martensitic steel [J]. Scr. Mater., 2008, 59: 313
126 Ohnuma M, Suzuki J, Ohtsuka S, et al. A new method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS steel [J]. Acta Mater., 2009, 57: 5571
127 Ioannidou C, Navarro-López A, Rijkenberg A, et al. Evolution of the precipitate composition during annealing of vanadium micro-alloyed steels by in-situ SANS [J]. Acta Mater., 2020, 201: 217
128 Lawitzki R, Hassan S, Karge L, et al. Differentiation of γ'- and γ''- precipitates in Inconel 718 by a complementary study with small-angle neutron scattering and analytical microscopy [J]. Acta Mater., 2019, 163: 28
doi: 10.1016/j.actamat.2018.10.014
129 Su Y H, Morooka S, Ohnuma M, et al. Quantitative analysis of cementite spheroidization in pearlite by small-angle neutron scattering [J]. Metall. Mater. Trans., 2015, 46A: 1731
130 Chen H, Chen Z, Chen Y C, et al. Effects of nanosized precipitates on the Portevin-Le Chatelier behavior: Model prediction and experimental verification [J]. Materialia, 2022, 21: 101299
131 Chen H, Chen Y C, Tang Y F, et al. Quantitative assessment of the influence of the Portevin-Le Chatelier effect on the flow stress in precipitation hardening AlMgScZr alloys [J]. Acta Mater., 2023, 255: 119060
132 Xu J P, Xia Y G, Li Z D, et al. Multi-physics instrument: Total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2021, 1013A: 165642
133 Farrow C L, Juhas P, Liu J W, et al. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals [J]. J. Phys.: Condens. Matter., 2007, 19: 335219
134 Lamparter P, Steeb S. Structure of metallic glasses: Experiments and models [J]. Z. Naturforsch., 1996, 51A: 983
135 Lan S, Zhu L, Wu Z D, et al. A medium-range structure motif linking amorphous and crystalline states [J]. Nat. Mater., 2021, 20: 1347
doi: 10.1038/s41563-021-01011-5 pmid: 34017117
136 Guo W, Dmowski W, Noh J Y, et al. Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study [J]. Metall. Mater. Trans., 2013, 44A: 1994
137 Nygård M M, Sławiński W A, Ek G, et al. Local order in high-entropy alloys and associated deuterides—A total scattering and Reverse Monte Carlo study [J]. Acta Mater., 2020, 199: 504
138 Owen L R, Pickering E J, Playford H Y, et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2017, 122: 11
139 Li B, Wang H, Kawakita Y, et al. Liquid-like thermal conduction in intercalated layered crystalline solids [J]. Nat. Mater., 2018, 17: 226
doi: 10.1038/s41563-017-0004-2 pmid: 29335610
140 Zhang Z, Gong W, Zhao X T, et al. Local atomic structures and lattice dynamics of inverse colossal barocaloric ammonium thiocyanate [J]. Phys. Rev. Mater., 2023, 7: 125402
141 Yang J Y, Ren W J, Zhao X G, et al. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99: 55
doi: 10.1016/j.jmst.2021.04.077
142 Hynes J T, Klinman J P, Limbach H H, et al. Hydrogen-Transfer Reactions [M]. Weinheim: Wiley-VCH, 2007: 203
143 Kofu M, Hashimoto N, Akiba H, et al. Hydrogen diffusion in bulk and nanocrystalline palladium: A quasielastic neutron scattering study [J]. Phys. Rev., 2016, 94B: 064303
144 Heuser B J, Prisk T R, Lin J L, et al. Direct measurement of hydrogen diffusivity and solubility limits in Zircaloy 2 (formula unit of ZrH0.0155) using incoherent quasi-elastic neutron scattering [J]. J. Nucl. Mater., 2019, 518: 177
doi: 10.1016/j.jnucmat.2019.02.045
145 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
146 Pan F, Ni K, Xu T, et al. Long-range ordered porous carbons produced from C60 [J]. Nature, 2023, 614: 95
[1] KE Yubin, LI Bin, DUAN Huiping. Morphology and Chemical Composition of Nanoprecipitate in AerMet100 Steel by Separation of the Nuclear and Magnetic Small-Angle Neutron Scattering Data[J]. 金属学报, 2024, 60(8): 1109-1118.
[2] LI Yawei, XIE Guang, KE Yubin, LU Yuzhang, HUANG Yaqi, ZHANG Jian. In Situ Small-Angle Neutron Scattering Study of Precipitation and Evolution Behavior of Secondary Phases in Ni-Based Superalloys[J]. 金属学报, 2024, 60(8): 1100-1108.
[3] ZHANG Ran, ZHU Shize, LIU Zhenyu, KE Yubin, WANG Dong, XIAO Bolv, MA Zongyi. Influence of Aging Temperatures on Precipitation Behaviors of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2024, 60(8): 1043-1054.
[4] SHEN Yang, GU Zhengman, WANG Cong. Phase Transformation Behaviors in the Heat-Affected Zones of Ferritic Heat-Resistant Steels Enabled by In Situ CSLM Observation[J]. 金属学报, 2024, 60(6): 802-816.
[5] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[6] YANG Ping, MA Dandan, GU Chen, GU Xinfu. Influence of Initial Microstructure and Cold Rolling Reduction on Transformation Texture and Magnetic Properties of Industrial Low-Grade Electrical Steel[J]. 金属学报, 2024, 60(3): 377-387.
[7] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[8] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[9] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[10] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[11] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[12] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[13] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[14] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[15] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
No Suggested Reading articles found!