|
|
Application of Neutron Characterization Techniques to Metallic Structural Materials |
WANG Yanxu1, GONG Wu2, SU Yuhua2, LI Bing1( ) |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 Japan Proton Accelerator Research Complex Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan |
|
Cite this article:
WANG Yanxu, GONG Wu, SU Yuhua, LI Bing. Application of Neutron Characterization Techniques to Metallic Structural Materials. Acta Metall Sin, 2024, 60(8): 1001-1016.
|
Abstract The correlation between the atomic structure, microstructure, and macroscopic properties of structural materials remains a core issue in materials research. In recent years, substantial progress has been achieved in constructing accelerator-based neutron sources and related experimental techniques, offering a robust platform for an in-depth understanding of the aforementioned correlation under real-time and in situ conditions. This article reviews the latest advancements in the application of major neutron characterization techniques, including neutron diffraction, Bragg-edge imaging, small-angle neutron scattering, pair distribution function analysis, and quasi-elastic/inelastic neutron scattering, in structural materials. Furthermore, it particularly highlights the origins and evolution of internal stresses during the phase transformations of steels, deformation mechanisms in light metals such as magnesium alloys, and microstructure and residual stress analyses using Bragg-edge imaging. Finally, a brief outlook on future development trends is provided.
|
Received: 01 March 2024
|
|
Fund: National Natural Science Foundation of China(52201029);CSNS Consortium on High-Performance Materials of Chinese Academy of Sciences(JZHKYPT-2021-01) |
Corresponding Authors:
LI Bing, professor, Tel: (024)23975272, E-mail: bingli@imr.ac.cn
|
1 |
Lázpita P, Barandiarán J M, Gutiérrez J, et al. Magnetic moment and chemical order in off-stoichiometric Ni-Mn-Ga ferromagnetic shape memory alloys [J]. New J. Phys., 2011, 13: 033039
|
2 |
Willis B T M, Carlile C J. Experimental Neutron Scattering [M]. Oxford: Oxford University Press, 2009: 15
|
3 |
Yu X B, Cheng Y Q, Li Y Y, et al. Neutron scattering studies of heterogeneous catalysis [J]. Chem. Rev., 2023, 123: 8638
doi: 10.1021/acs.chemrev.3c00101
pmid: 37315192
|
4 |
Haynes R, Paradowska A M, Chowdhury M A H, et al. An inert-gas furnace for neutron scattering measurements of internal stresses in engineering materials [J]. Meas. Sci. Technol., 2012, 23: 047002
|
5 |
Gao L, Han S B, Ni H J, et al. Application of neutron imaging in observing various states of matter inside lithium batteries [J]. Natl. Sci. Rev., 2023, 10: nwad238
|
6 |
Lehmann E H, Frei G, Vontobel P, et al. The energy-selective option in neutron imaging [J]. Nucl. Instrum. Methods Phys. Res., 2009, 603A: 429
|
7 |
Treimer W, Strobl M, Kardjilov N, et al. Wavelength tunable device for neutron radiography and tomography [J]. Appl. Phys. Lett., 2006, 89: 203504
|
8 |
Tamaki M. Conceptual monochromatic digital neutron radiography using continuous cold neutron beam [J]. Nucl. Instrum. Methods Phys. Res., 2005, 542A: 32
|
9 |
Kamiyama T, Sato H, Miyamoto N, et al. Energy sliced neutron tomography using neutron resonance absorption spectrometer [J]. Nucl. Instrum. Methods Phys. Res., 2009, 600A: 107
|
10 |
Tremsin A S, Rakovan J, Shinohara T, et al. Non-destructive study of bulk crystallinity and elemental composition of natural gold single crystal samples by energy-resolved neutron imaging [J]. Sci. Rep., 2017, 7: 40759
doi: 10.1038/srep40759
pmid: 28102285
|
11 |
Li B, Zhang Z D. Neutron scattering of magnetocaloric and barocaloric materials [J]. Sci. Sin. Phys., Mech. Astron., 2021, 51: 067505
|
|
李 昺, 张志东. 磁卡与压卡材料的中子散射 [J]. 中国科学: 物理学 力学 天文学, 2021, 51: 067505
|
12 |
An K, Skorpenske H D, Stoica A D, et al. First in situ lattice strains measurements under load at VULCAN [J]. Metall. Mater. Trans., 2011, 42A: 95
|
13 |
Harjo S, Ito T, Aizawa K, et al. Current status of engineering materials diffractometer at J-PARC [J]. Mater. Sci. Forum, 2011, 681: 443
|
14 |
Shinohara T, Kai T, Oikawa K, et al. The energy-resolved neutron imaging system, RADEN [J]. Rev. Sci. Instrum., 2020, 91: 043302
|
15 |
Isegawa K, Setoyama D, Kimura H, et al. The first application of a Gd3Al2Ga3O12:Ce single-crystal scintillator to neutron radiography [J]. J. Imaging, 2021, 7: 232
|
16 |
Kockelmann W, Minniti T, Pooley D, et al. Time-of-flight neutron imaging on IMAT@ISIS: A new user facility for materials science [J]. J. Imaging, 2018, 4: 47
|
17 |
Li X H. The new engineering material diffractometer (EMD) at CSNS [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
|
18 |
Chen J. Progress of GPPD & ERNI and their applications at CSNS [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
|
19 |
Sun G A, Liu D, Gong J, et al. The neutron scattering platform of China Mianyang Research Reactor (CMRR) and recent applications [J]. Sci. Sin. Phys., Mech. Astron., 2021, 51: 092009
|
|
孙光爱, 刘 栋, 龚 建 等. 中国绵阳研究堆CMRR中子散射平台及应用 [J]. 中国科学: 物理学 力学 天文学, 2021, 51: 092009
|
20 |
Wang B H, Zhong S Y, Lin H, et al. HETU: A new high-resolution stress and texture neutron diffractometer at China Mianyang Research Reactor [J]. J. Appl. Cryst., 2023, 56: 1674
|
21 |
Li T F, Wu M M, Jiao X S, et al. Current status and future prospect of neutron facilities at China advanced research reactor [J]. Nucl. Phys. Rev., 2020, 37: 364
|
|
李天富, 武梅梅, 焦学胜 等. 中国先进研究堆中子科学平台发展现状及展望 [J]. 原子核物理评论, 2020, 37: 364
|
22 |
He L F. The current status of neutron imaging project at CARR [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
|
23 |
Onink M, Brakman C M, Tichelaar F D, et al. The lattice parameters of austenite and ferrite in Fe-C alloys as functions of carbon concentration and temperature [J]. Scr. Metall. Mater., 1993, 29: 1011
|
24 |
Tomota Y, Gong W, Harjo S, et al. Reverse austenite transformation behavior in a tempered martensite low-alloy steel studied using in situ neutron diffraction [J]. Scr. Mater., 2017, 133: 79
|
25 |
Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Mater., 2015, 85: 243
|
26 |
Dutta R K, Huizenga R M, Amirthalingam M, et al. In-situ synchrotron diffraction studies on transformation strain development in a high strength quenched and tempered structural steel—Part I. Bainitic transformation [J]. Metall. Mater. Trans., 2014, 45A: 218
|
27 |
Lin S, Borgenstam A, Stark A, et al. Effect of Si on bainitic transformation kinetics in steels explained by carbon partitioning, carbide formation, dislocation densities, and thermodynamic conditions [J]. Mater. Charact., 2022, 185: 111774
|
28 |
Xu P G, Zhang S Y, Harjo S, et al. Principal preferred orientation evaluation of steel materials using time-of-flight neutron diffraction [J]. Quantum Beam Sci., 2024, 8: 7
|
29 |
He S H, He B B, Zhu K Y, et al. Revealing the role of dislocations on the stability of retained austenite in a tempered bainite [J]. Scr. Mater., 2019, 168: 23
|
30 |
Zhang S Y, Godfrey E, Kockelmann W, et al. High-tech composites to ancient metals [J]. Mater. Today, 2009, 12: 78
|
31 |
Li L, Miyamoto G, Zhang Y J, et al. Quantitative analysis of microstructure evolution, stress partitioning and thermodynamics in the dynamic transformation of Fe-14Ni alloy [J]. J. Mater. Sci. Technol., 2024, 184: 221
doi: 10.1016/j.jmst.2023.10.037
|
32 |
Tomota Y, Wang Y X, Ohmura T, et al. In situ neutron diffraction study on ferrite and pearlite transformations for a 1.5Mn-1.5Si-0.2C steel [J]. ISIJ Int., 2018, 58: 2125
|
33 |
Plotkowski A, Saleeby K, Fancher C M, et al. Operando neutron diffraction reveals mechanisms for controlled strain evolution in 3D printing [J]. Nat. Commun., 2023, 14: 4950
doi: 10.1038/s41467-023-40456-x
pmid: 37587109
|
34 |
Wang Y X, Tomota Y, Ohmura T, et al. Real time observation of martensite transformation for a 0.4C low alloyed steel by neutron diffraction [J]. Acta Mater., 2020, 184: 30
|
35 |
Aaronson H I, Enomoto M, Lee J K. Mechanisms of Diffusional Phase Transformations in Metals and Alloys [M]. Boca Raton: CRC Press, 2010: 601
|
36 |
Liu J B, Chen C X, Feng Q, et al. Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel: An in-situ TEM study [J]. Mater. Sci. Eng., 2017, A703: 236
|
37 |
Fukui D, Nakada N, Onaka S. Internal residual stress originated from Bain strain and its effect on hardness in Fe-Ni martensite [J]. Acta Mater., 2020, 196: 660
|
38 |
Villa M, Niessen F, Somers M A J. In situ investigation of the evolution of lattice strain and stresses in austenite and martensite during quenching and tempering of steel [J]. Metall. Mater. Trans., 2018, 49A: 28
|
39 |
Huyghe P, Caruso M, Collet J L, et al. Into the quenching & partitioning of a 0.2C steel: An in-situ synchrotron study [J]. Mater. Sci. Eng., 2019, A743: 175
|
40 |
Wang Y X, Tomota Y, Ohmura T, et al. Evolution of austenite lattice parameter during isothermal transformation in a 0.4 C low alloyed steel [J]. Materialia, 2023, 27: 101685
|
41 |
Gong W, Harjo S, Tomota Y, et al. Lattice parameters of austenite and martensite during transformation for Fe-18Ni alloy investigated through in-situ neutron diffraction [J]. Acta Mater., 2023, 250: 118860
|
42 |
Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J]. Proc. Roy. Soc., 1957, 241A: 376
|
43 |
Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta Metall., 1973, 21: 571
|
44 |
Shirai Y, Araki H, Mori T, et al. Positron annihilation study of lattice defects induced by hydrogen absorption in some hydrogen storage materials [J]. J. Alloys Compd., 2002, 330-332: 125
|
45 |
Chalermkarnnon P, Araki H, Shirai Y. Excess vacancies induced by disorder-order phase transformation in Ni3Fe [J]. Mater. Trans., 2002, 43: 1486
|
46 |
Shibata A, Takeda Y, Park N, et al. Nature of dynamic ferrite transformation revealed by in-situ neutron diffraction analysis during thermomechanical processing [J]. Scr. Mater., 2019, 165: 44
|
47 |
Li S L, Li Y, Wang Y K, et al. Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology [J]. Acta Metall. Sin., 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
|
|
李时磊, 李 阳, 王友康 等. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价 [J]. 金属学报, 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
|
48 |
Schmank M J, Krawitz A D. Measurement of a stress gradient through the bulk of an aluminum alloy using neutrons [J]. Metall. Trans., 1982, 13A: 1069
|
49 |
MacEwen S R, Faber J, Turner A P L. The use of time-of-flight neutron diffraction to study grain interaction stresses [J]. Acta Metall., 1983, 31: 657
|
50 |
Allen A J, Bourke M A M, Dawes S, et al. The analysis of internal strains measured by neutron diffraction in Al/SiC metal matrix composites [J]. Acta Metall. Mater., 1992, 40: 2361
|
51 |
Prangnell P B, Downes T, Withers P J, et al. An examination of the mean stress contribution to the Bauschinger effect by neutron diffraction [J]. Mater. Sci. Eng., 1995, A197: 215
|
52 |
Zhai H Y, Liu C H, Shang X Q, et al. Measuring texture-component-dependent stress of CuZn39Pb2 by neutron diffraction [J]. Int. J. Mech. Sci., 2024, 270: 109109
|
53 |
Gharghouri M A, Weatherly G C, Embury J D, et al. Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction [J]. Philos. Mag., 1999, 79A: 1671
|
54 |
Aizawa K, Gong W, Harjo S, et al. In-situ neutron diffraction study on tensile behavior of LPSO Mg-Zn-Y alloys [J]. Mater. Trans., 2013, 54: 1083
|
55 |
Harjo S, Aizawa K, Gong W, et al. Neutron diffraction monitoring of as-cast Mg97Zn1Y2 during compression and tension [J]. Mater. Trans., 2020, 61: 828
|
56 |
Zheng R X, Gong W, Du J P, et al. Rediscovery of Hall-Petch strengthening in bulk ultrafine grained pure Mg at cryogenic temperature: A combined in-situ neutron diffraction and electron microscopy study [J]. Acta Mater., 2022, 238: 118243
|
57 |
Harjo S, Gong W, Aizawa K, et al. Strengthening of αMg and long-period stacking ordered phases in a Mg-Zn-Y alloy by hot-extrusion with low extrusion ratio [J]. Acta Mater., 2023, 255: 119029
|
58 |
Hagihara K, Mayama T, Yamasaki M, et al. Contributions of multimodal microstructure in the deformation behavior of extruded Mg alloys containing LPSO phase [J]. Int. J. Plast., 2024, 173: 103865
|
59 |
Muránsky O, Carr D G, Barnett M R, et al. Investigation of deformation mechanisms involved in the plasticity of AZ31 Mg alloy: In situ neutron diffraction and EPSC modelling [J]. Mater. Sci. Eng., 2008, A496: 14
|
60 |
Muránsky O, Carr D G, Šittner P, et al. In situ neutron diffraction investigation of deformation twinning and pseudoelastic-like behaviour of extruded AZ31 magnesium alloy [J]. Int. J. Plast., 2009, 25: 1107
|
61 |
Muránsky O, Barnett M R, Carr D G, et al. Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission [J]. Acta Mater., 2010, 58: 1503
|
62 |
Muránsky O, Barnett M R, Luzin V, et al. On the correlation between deformation twinning and Lüders-like deformation in an extruded Mg alloy: In situ neutron diffraction and EPSC.4 modelling [J]. Mater. Sci. Eng., 2010, A527: 1383
|
63 |
Lee S Y, Wang H, Gharghouri M A, et al. Deformation behavior of solid-solution-strengthened Mg-9 wt.% Al alloy: In situ neutron diffraction and elastic-viscoplastic self-consistent modeling [J]. Acta Mater., 2014, 73: 139
|
64 |
Gong W, Aizawa K, Harjo S, et al. Deformation behavior of as-cast and as-extruded Mg97Zn1Y2 alloys during compression, as tracked by in situ neutron diffraction [J]. Int. J. Plast., 2018, 111: 288
|
65 |
Gong W, Kawasaki T, Zheng R X, et al. Compressive deformation behavior of AZ31 alloy at 21K: An in-situ neutron diffraction study [J]. Scr. Mater., 2023, 225: 115161
|
66 |
Harjo S, Gong W, Aizawa K, et al. Effect of extrusion ratio in hot-extrusion on kink deformation during compressive deformation in an αMg/LPSO dual-phase magnesium alloy monitored by in situ neutron diffraction [J]. Mater. Trans., 2023, 64: 766
|
67 |
Agnew S R, Brown D W, Tomé C N. Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction [J]. Acta Mater., 2006, 54: 4841
|
68 |
Máthis K, Csiszár G, Čapek J, et al. Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured magnesium polycrystals—Comparison of experimental and modeling results [J]. Int. J. Plast., 2015, 72: 127
|
69 |
Čapek J, Máthis K, Clausen B, et al. Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium [J]. Acta Mater., 2017, 130: 319
|
70 |
Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium [J]. Mater. Sci. Eng., 2005, A399: 1
|
71 |
Clausen B, Tomé C N, Brown D W, et al. Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg [J]. Acta Mater., 2008, 56: 2456
|
72 |
Agnew S R, Mulay R P, Polesak III F J, et al. In situ neutron diffraction and polycrystal plasticity modeling of a Mg-Y-Nd-Zr alloy: Effects of precipitation on individual deformation mechanisms [J]. Acta Mater., 2013, 61: 3769
|
73 |
Gong W, Zheng R X, Harjo S, et al. In-situ observation of twinning and detwinning in AZ31 alloy [J]. J. Magnes. Alloy., 2022, 10: 3418
|
74 |
Wu L, Jain A, Brown D W, et al. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A [J]. Acta Mater., 2008, 56: 688
|
75 |
Wu L, Agnew S R, Brown D W, et al. Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A [J]. Acta Mater., 2008, 56: 3699
|
76 |
Wu W, An K, Huang L, et al. Deformation dynamics study of a wrought magnesium alloy by real-time in situ neutron diffraction [J]. Scr. Mater., 2013, 69: 358
|
77 |
Wu W, Qiao H, An K, et al. Investigation of deformation dynamics in a wrought magnesium alloy [J]. Int. J. Plast., 2014, 62: 105
|
78 |
Wu W, Liaw P K, An K. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction [J]. Acta Mater., 2015, 85: 343
|
79 |
Turner P A, Tomé C N. A study of residual stresses in Zircaloy-2 with rod texture [J]. Acta Metall. Mater., 1994, 42: 4143
|
80 |
Agnew S R, Tomé C N, Brown D W, et al. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling [J]. Scr. Mater., 2003, 48: 1003
|
81 |
Máthis K, Nyilas K, Axt A, et al. The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction [J]. Acta Mater., 2004, 52: 2889
|
82 |
Ungár T, Castelnau O, Ribárik G, et al. Grain to grain slip activity in plastically deformed Zr determined by X-ray micro-diffraction line profile analysis [J]. Acta Mater., 2007, 55: 1117
|
83 |
Wang M, Xu X Y, Wang H Y, et al. Evolution of dislocation and twin densities in a Mg alloy at quasi-static and high strain rates [J]. Acta Mater., 2020, 201: 102
|
84 |
Tomota Y, Sato S, Harjo S. Recent progress of line-profile analyses for neutron or X-ray diffraction [J]. Tetsu Hagané, 2017, 103: 73
|
|
友田陽, 佐藤 成男. . ハルヨステファヌス中性子・X線回折ラインプロファイル解析の最近の進歩 [J]. 鉄と鋼, 2017, 103: 73
|
85 |
Li Y Z, Huang M X. A Method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction [J]. Acta Metall. Sin., 2020, 56: 487
doi: 10.11900/0412.1961.2020.00016
|
|
李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法 [J]. 金属学报, 2020, 56: 487
doi: 10.11900/0412.1961.2020.00016
|
86 |
Xu F, Holt R A, Daymond M R, et al. Development of internal strains in textured Zircaloy-2 during uni-axial deformation [J]. Mater. Sci. Eng., 2008, A488: 172
|
87 |
Daymond M R, Holt R A, Cai S, et al. Texture inheritance and variant selection through an hcp-bcc-hcp phase transformation [J]. Acta Mater., 2010, 58: 4053
|
88 |
Cai S, Daymond M R, Holt R A. Deformation of high β-phase fraction Zr-Nb alloys at room temperature [J]. Acta Mater., 2012, 60: 3355
|
89 |
Long F, Xu F, Daymond M R. Temperature dependence of the activity of deformation modes in an HCP zirconium alloy [J]. Metall. Mater. Trans., 2013, 44A: 4183
|
90 |
Abdolvand H, Daymond M R, Mareau C. Incorporation of twinning into a crystal plasticity finite element model: Evolution of lattice strains and texture in Zircaloy-2 [J]. Int. J. Plast., 2011, 27: 1721
|
91 |
Warwick J L W, Jones N G, Rahman K M, et al. Lattice strain evolution during tensile and compressive loading of CP Ti [J]. Acta Mater., 2012, 60: 6720
|
92 |
Gloaguen D, Oum G, Legrand V, et al. Experimental and theoretical studies of intergranular strain in an alpha titanium alloy during plastic deformation [J]. Acta Mater., 2013, 61: 5779
|
93 |
Lee M S, Kawasaki T, Yamashita T, et al. In-situ neutron diffraction study of lattice deformation behaviour of commercially pure titanium at cryogenic temperature [J]. Sci. Rep., 2022, 12: 3719
|
94 |
Wang Z Q, Stoica A D, Ma D, et al. Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction: Application to additive manufacturing [J]. Mater. Sci. Eng., 2017, A707: 585
|
95 |
Cho K, Morioka R, Harjo S, et al. Study on formation mechanism of {332} <113> deformation twinning in metastable β-type Ti alloy focusing on stress-induced α" martensite phase [J]. Scr. Mater., 2020, 177: 106
|
96 |
Kim D K, Woo W, Hwang J H, et al. Stress partitioning behavior of an AlSi10Mg alloy produced by selective laser melting during tensile deformation using in situ neutron diffraction [J]. J. Alloys Compd., 2016, 686: 281
|
97 |
Zhang X X, Andrä H, Harjo S, et al. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation [J]. Mater. Des., 2021, 198: 109339
|
98 |
Zhang X X, Knoop D, Andrä H, et al. Multiscale constitutive modeling of additively manufactured Al-Si-Mg alloys based on measured phase stresses and dislocation density [J]. Int. J. Plast., 2021, 140: 102972
|
99 |
Wang B, He H Y, Naeem M, et al. Deformation of CoCrFeNi high entropy alloy at large strain [J]. Scr. Mater., 2018, 155: 54
|
100 |
Wang Y Q, Liu B, Yan K, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
|
101 |
He H Y, Naeem M, Zhang F, et al. Stacking fault driven phase transformation in CrCoNi medium entropy alloy [J]. Nano Lett., 2021: 21: 1419
doi: 10.1021/acs.nanolett.0c04244
pmid: 33464087
|
102 |
Wei D X, Wang L Q, Zhang Y J, et al. Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys [J]. Acta Mater., 2022, 225: 117571
|
103 |
Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction [J]. Acta Mater., 2017, 127: 471
|
104 |
Woo W, Jeong J S, Kim D K, et al. Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction [J]. Sci. Rep., 2020, 10: 1350
doi: 10.1038/s41598-020-58273-3
pmid: 31992801
|
105 |
Kwon H, Sathiyamoorthi P, Gangaraju M K, et al. High-density nanoprecipitates and phase reversion via maraging enable ultrastrong yet strain-hardenable medium-entropy alloy [J]. Acta Mater., 2023, 248: 118810
|
106 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602
pmid: 26830651
|
107 |
Shi Y J, Li S L, Lee T L, et al. In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy [J]. Mater. Sci. Eng., 2020, A771: 138555
|
108 |
Naeem M, He H Y, Zhang F L, et al. Cooperative deformation in high-entropy alloys at ultralow temperatures [J]. Sci. Adv., 2020, 6: eaax4002
|
109 |
Yamashita T, Koga N, Kawasaki T, et al. Work hardening behavior of dual phase copper-iron alloy at low temperature [J]. Mater. Sci. Eng., 2021, A819: 141509
|
110 |
Wang Y X, Gong W, Kawasaki T, et al. In situ neutron diffraction study on the deformation behavior of the plastic inorganic semiconductor Ag2S [J]. Appl. Phys. Lett., 2023, 123: 011903
|
111 |
Su Y H, Oikawa K, Harjo S, et al. Time-of-flight neutron Bragg-edge transmission imaging of microstructures in bent steel plates [J]. Mater. Sci. Eng., 2016, A675: 19
|
112 |
Su Y H, Oikawa K, Shinohara T, et al. Time-of-flight neutron transmission imaging of martensite transformation in bent plates of a Fe-25Ni-0.4C alloy [J]. Phys. Proc., 2017, 88: 42
|
113 |
Santisteban J R, Edwards L, Fitzpatrick M E, et al. Strain imaging by Bragg edge neutron transmission [J]. Nucl. Instrum. Methods Phys. Res., 2002, 481A: 765
|
114 |
Tremsin A S, Yau T Y, Kockelmann W. Non‐destructive examination of loads in regular and self-locking Spiralock® threads through energy-resolved neutron imaging [J]. Strain, 2016, 52: 548
|
115 |
Su Y H, Oikawa K, Shinohara T, et al. Residual stress relaxation by bending fatigue in induction-hardened gear studied by neutron Bragg edge transmission imaging and X-ray diffraction [J]. Int. J. Fatigue, 2023, 174: 107729
|
116 |
Hendriks J N, Gregg A W T, Wensrich C M, et al. Bragg-edge elastic strain tomography for in situ systems from energy-resolved neutron transmission imaging [J]. Phys. Rev. Mater., 2017, 1: 053802
|
117 |
Ramadhan R S, Kockelmann W, Minniti T, et al. Characterization and application of Bragg-edge transmission imaging for strain measurement and crystallographic analysis on the IMAT beamline [J]. J. Appl. Cryst., 2019, 52: 351
doi: 10.1107/S1600576719001730
|
118 |
Tomota Y, Murakami T, Wang Y X, et al. Influence of carbon concentration and magnetic transition on the austenite lattice parameter of 30Mn-C steel [J]. Mater. Charact., 2020, 163: 110243
|
119 |
Su Y H, Oikawa K, Shinohara T, et al. Neutron Bragg-edge transmission imaging for microstructure and residual strain in induction hardened gears [J]. Sci. Rep., 2021, 11: 4155
doi: 10.1038/s41598-021-83555-9
pmid: 33603006
|
120 |
Bakhtiari M, Sadeghi F, Sato H, et al. Microstructure and texture analysis of 304 austenitic stainless steel using Bragg edge transmission imaging [J]. J. Appl. Cryst., 2023, 56: 1403
|
121 |
Busi M, Kalentics N, Morgano M, et al. Nondestructive characterization of laser powder bed fusion parts with neutron Bragg edge imaging [J]. Addit. Manuf., 2021, 39: 101848
|
122 |
Ramadhan R S, Glaser D, Soyama H, et al. Mechanical surface treatment studies by Bragg edge neutron imaging [J]. Acta Mater., 2022, 239: 118259
|
123 |
Ito D, Sato H, Odaira N, et al. Spatial distribution and preferred orientation of crystalline microstructure of lead-bismuth eutectic [J]. J. Nucl. Mater., 2022, 569: 153921
|
124 |
Oikawa K, Kiyanagi Y, Sato H, et al. Pulsed neutron imaging based crystallographic structure study of a Japanese sword made by sukemasa in the muromachi period [J]. Mater. Res. Proc., 2020, 15: 207
|
125 |
Ojima M, Ohnuma M, Suzuki J, et al. Origin of the enhanced hardness of a tempered high-nitrogen martensitic steel [J]. Scr. Mater., 2008, 59: 313
|
126 |
Ohnuma M, Suzuki J, Ohtsuka S, et al. A new method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS steel [J]. Acta Mater., 2009, 57: 5571
|
127 |
Ioannidou C, Navarro-López A, Rijkenberg A, et al. Evolution of the precipitate composition during annealing of vanadium micro-alloyed steels by in-situ SANS [J]. Acta Mater., 2020, 201: 217
|
128 |
Lawitzki R, Hassan S, Karge L, et al. Differentiation of γ'- and γ''- precipitates in Inconel 718 by a complementary study with small-angle neutron scattering and analytical microscopy [J]. Acta Mater., 2019, 163: 28
doi: 10.1016/j.actamat.2018.10.014
|
129 |
Su Y H, Morooka S, Ohnuma M, et al. Quantitative analysis of cementite spheroidization in pearlite by small-angle neutron scattering [J]. Metall. Mater. Trans., 2015, 46A: 1731
|
130 |
Chen H, Chen Z, Chen Y C, et al. Effects of nanosized precipitates on the Portevin-Le Chatelier behavior: Model prediction and experimental verification [J]. Materialia, 2022, 21: 101299
|
131 |
Chen H, Chen Y C, Tang Y F, et al. Quantitative assessment of the influence of the Portevin-Le Chatelier effect on the flow stress in precipitation hardening AlMgScZr alloys [J]. Acta Mater., 2023, 255: 119060
|
132 |
Xu J P, Xia Y G, Li Z D, et al. Multi-physics instrument: Total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2021, 1013A: 165642
|
133 |
Farrow C L, Juhas P, Liu J W, et al. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals [J]. J. Phys.: Condens. Matter., 2007, 19: 335219
|
134 |
Lamparter P, Steeb S. Structure of metallic glasses: Experiments and models [J]. Z. Naturforsch., 1996, 51A: 983
|
135 |
Lan S, Zhu L, Wu Z D, et al. A medium-range structure motif linking amorphous and crystalline states [J]. Nat. Mater., 2021, 20: 1347
doi: 10.1038/s41563-021-01011-5
pmid: 34017117
|
136 |
Guo W, Dmowski W, Noh J Y, et al. Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study [J]. Metall. Mater. Trans., 2013, 44A: 1994
|
137 |
Nygård M M, Sławiński W A, Ek G, et al. Local order in high-entropy alloys and associated deuterides—A total scattering and Reverse Monte Carlo study [J]. Acta Mater., 2020, 199: 504
|
138 |
Owen L R, Pickering E J, Playford H Y, et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2017, 122: 11
|
139 |
Li B, Wang H, Kawakita Y, et al. Liquid-like thermal conduction in intercalated layered crystalline solids [J]. Nat. Mater., 2018, 17: 226
doi: 10.1038/s41563-017-0004-2
pmid: 29335610
|
140 |
Zhang Z, Gong W, Zhao X T, et al. Local atomic structures and lattice dynamics of inverse colossal barocaloric ammonium thiocyanate [J]. Phys. Rev. Mater., 2023, 7: 125402
|
141 |
Yang J Y, Ren W J, Zhao X G, et al. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99: 55
doi: 10.1016/j.jmst.2021.04.077
|
142 |
Hynes J T, Klinman J P, Limbach H H, et al. Hydrogen-Transfer Reactions [M]. Weinheim: Wiley-VCH, 2007: 203
|
143 |
Kofu M, Hashimoto N, Akiba H, et al. Hydrogen diffusion in bulk and nanocrystalline palladium: A quasielastic neutron scattering study [J]. Phys. Rev., 2016, 94B: 064303
|
144 |
Heuser B J, Prisk T R, Lin J L, et al. Direct measurement of hydrogen diffusivity and solubility limits in Zircaloy 2 (formula unit of ZrH0.0155) using incoherent quasi-elastic neutron scattering [J]. J. Nucl. Mater., 2019, 518: 177
doi: 10.1016/j.jnucmat.2019.02.045
|
145 |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413
pmid: 32381592
|
146 |
Pan F, Ni K, Xu T, et al. Long-range ordered porous carbons produced from C60 [J]. Nature, 2023, 614: 95
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|