Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (8): 1183-1192    DOI: 10.11900/0412.1961.2023.00414
Research paper Current Issue | Archive | Adv Search |
Effect of Hot-Pressing Temperature on the Microstructure and Properties of the Diffusion-Bonded Region of TC4 Alloy
ZHANG Mingchuan1,2, XU Qinsi2(), LIU Yi1, CAI Yusheng1(), MU Yiqiang2, REN Dechun1, JI Haibin1, LEI Jiafeng1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, China
Cite this article: 

ZHANG Mingchuan, XU Qinsi, LIU Yi, CAI Yusheng, MU Yiqiang, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Hot-Pressing Temperature on the Microstructure and Properties of the Diffusion-Bonded Region of TC4 Alloy. Acta Metall Sin, 2025, 61(8): 1183-1192.

Download:  HTML  PDF(4065KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Diffusion bonding has been gaining increasing attention in the manufacturing of precise and intricate structural components in aerospace and other industries. The bonding temperature is a critical factor that affects the performance of the parts produced by diffusion bonding. This study explores the impact of hot-pressing temperature on the microstructure, mechanical properties, and fracture mechanism of TC4 titanium alloy joints formed through diffusion bonding. Samples were prepared using a hot-pressing technique. The findings reveal that dynamic recrystallization occurs at the diffusion bonding interface during the process. At lower temperatures, this recrystallization results in the formation of a fine α-phase at the interface. As the hot-pressing temperature increases, the α-phase progressively coarsens. Notably, there is a substantial disparity between the size of the α-phase formed through dynamic recrystallization at the interface and that in the nondiffusion zone of the base material, leading to a crystallographic mismatch. This mismatch substantially reduces the properties at the diffusion interface and consequently leads to fracture in the diffusion-bonded joints within the bonding zone after hot pressing. In the post-heat treatment, the diffusion zone consists of primary α (αp) phase, needle-like secondary α (αs) phase, and β phase. Elevating the bonding temperature gradually increases the size of the α phase, thereby improving the crystallographic match at the bonding interface and facilitating interface migration. After the heat treatment at 970 oC, the tensile strength and elongation of the 950 oC diffusion-bonded TC4 Alloy joints were measured at 998.7 MPa and 17.5%, respectively, achieving the performance levels of the alloy before diffusion bonding.

Key words:  TC4 titanium alloy      diffusion bonding      dynamic recrystallization      crystallographic mismatch      heat treatment     
Received:  18 October 2023     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(52205431);Special Foundation for Civil Aircraft Research of the Ministry of Industry and Information Technology of China(MJZ 2-2N21-5)
Corresponding Authors:  CAI Yusheng, associate professor, Tel: (024)83970131, E-mail: yscai@imr.ac.cn;

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00414     OR     https://www.ams.org.cn/EN/Y2025/V61/I8/1183

Fig.1  Morphology of titanium alloy diffusion joint surface and schematics of diffusion bonding process
(a) photo and three-dimensional morphology of diffusion joint surface
(b) schematic of the bar hot pressing diffusion bonding process
(c) schematic of sampling positions for microstructure and tensile tests (unit: mm)
Fig.2  Microstructure of TC4 titanium alloy bar (αp—primary α phase, αs—secondary α phase)
Fig.3  SEM images of microstructures of joints diffusion bonded at different temperatures (DRX—dynamic recrystallization)
(a) sample 1# (930 oC) (b) sample 2# (950 oC) (c) sample 3# (970 oC)
Fig.4  SEM images and element distributions of diffusion bonding region at different hot pressing temperatures
(a) sample 1# (b) sample 2# (c) sample 3#
Fig.5  Microstructure evolution schematics of titanium alloy bar during hot pressing diffusion process
(a) jointing process of the bar diffusion bonding interface
(b) effect of hot pressing temperature on the evolution of bonding interface
Fig.6  Stress-strain curves (a) and tensile properties (b) of diffusion bonding titanium alloys at different hot pressing temperatures (BM—base material)
Fig.7  Tensile fracture morphologies of diffusion bonding titanium alloys of sample 1# (a-d), sample 2# (e-h), and sample 3# (i-l)
(a, e, i) tensile sample photos (b, f, j) microstructures of vertical sections (c, g, k) macromorphologies of cross sections (d, h, l) corresponding magnified views of the boxed areas in Figs.7c, g, and k, respectively
Fig.8  Schematic of dislocation distributions in α phases with various sizes during tensile testing
Fig.9  SEM images of diffusion bonding regions after heat treatment (970 oC, 2 h, air cooling)
(a) sample 1# (b) sample 2# (c) sample 3#
Fig.10  Stress-strain curves (a) and tensile properties (b) of diffusion bonding titanium alloys after heat treatment (BM-HT—base material after heat treatment)
Fig.11  Tensile fracture morphologies of diffusion bonding titanium alloys after heat treatment of sample 1# (a-c), sample 2# (d-f), and sample 3# (g-i)
(a, d, g) tensile sample photos (b, e, h) macromorphologies of cross sections (c, f, i) corresponding magnified views of the boxed areas in Figs.12b, e, and h, respectively
[1] Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
[2] Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
doi: 10.11900/0412.1961.2018.00460
[3] Ren D C, Su H H, Zhang H B, et al. Effect of cold rotary-swaging deformation on microstructure and tensile properties of TB9 titanium alloy [J]. Acta Metall. Sin., 2019, 55: 480
doi: 10.11900/0412.1961.2018.00241
任德春, 苏虎虎, 张慧博 等. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响 [J]. 金属学报, 2019, 55: 480
doi: 10.11900/0412.1961.2018.00241
[4] Li X F, Li T L, An D Y, et al. Research progress of titanium alloys and their diffusion bonding fatigue characteristics [J]. Acta Metall. Sin., 2022, 58: 473
doi: 10.11900/0412.1961.2021.00548
李细锋, 李天乐, 安大勇 等. 钛合金及其扩散焊疲劳特性研究进展 [J]. 金属学报, 2022, 58: 473
doi: 10.11900/0412.1961.2021.00548
[5] He P, Feng J C, Han J C, et al. Advances in TiAl intermetallics and its joining technology (Part Ⅱ) [J]. Trans. China Weld. Ins., 2002, 23(5): 91
何 鹏, 冯吉才, 韩杰才 等. TiAl金属间化合物及其连接技术的研究进展 [J]. 焊接学报, 2002, 23(5): 91
[6] Zhang C C, Zhang T C, Ji Y J, et al. Microstructure evolution and super-diffusion mechanism of weld zone of dissimilar titanium alloys after linear friction welding [J]. Rare Met. Mater. Eng., 2023, 52: 834
张传臣, 张田仓, 季亚娟 等. 异种钛合金线性摩擦焊组织演变及超扩散机理(英文) [J]. 稀有金属材料与工程, 2023, 52: 834
[7] Zhang H, Li J L, Ma P Y, et al. Study on microstructure and impact toughness of TC4 titanium alloy diffusion bonding joint [J]. Vacuum, 2018, 152: 272
[8] Zhao Z C, Xu J H, Fu Y C, et al. An investigation on adaptively machining the leading and tailing edges of an SPF/DB titanium hollow blade using free-form deformation [J]. Chin. J. Aeronaut., 2018, 31: 178
[9] Ferguson B, Ramulu M. Surface tracking of diffusion bonding void closure and its application to titanium alloys [J]. Int. J. Mater. Form., 2020, 13: 517
doi: 10.1007/s12289-019-01489-0
[10] Gao Y P, Wang Y, Wang D P, et al. Microstructure and mechanical properties of diffusion bonded TC11 alloy joint [J]. Rare Met. Mater. Eng., 2023, 52: 770
高云鹏, 王 颖, 王东坡 等. TC11钛合金扩散连接接头组织及力学性能研究 [J]. 稀有金属材料与工程, 2023, 52: 770
[11] Ma R F, Li M Q, Li H, et al. Modeling of void closure in diffusion bonding process based on dynamic conditions [J]. Sci. China Technol. Sci., 2012, 55: 2420
[12] Zou J T, Gao L, Xie T F, et al. Interfacial microstructure and shear strength of Cu/Al bimetal fabricated by diffusion welding [J]. Rare Met. Mater. Eng., 2020, 49: 4121
邹军涛, 高 磊, 谢庭芳 等. 扩散连接制备Cu/Al双金属及其界面组织与剪切强度(英文) [J]. 稀有金属材料与工程, 2020, 49: 4121
[13] Sharma G, Dwivedi D K. Diffusion bonding of pre-friction treated structural steel with reversion of deformation induced grains [J]. Mater. Sci. Eng., 2017, A696: 393
[14] He S L, Zhao Y S, Lu F, et al. Effects of hot isostatic pressure on microdefects and stress rupture life of second-generation nickel-based single crystal superalloy in as-cast and as-solid-solution states [J]. Acta Metall. Sin., 2020, 56: 1195
doi: 10.11900/0412.1961.2020.00020
和思亮, 赵云松, 鲁 凡 等. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响 [J]. 金属学报, 2020, 56: 1195
doi: 10.11900/0412.1961.2020.00020
[15] Cheng M, Lu Z G, Wu J, et al. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98: 177
doi: 10.1016/j.jmst.2021.04.066
[16] Cai C, Song B, Xue P J, et al. Effect of hot isostatic pressing procedure on performance of Ti6Al4V: Surface qualities, microstructure and mechanical properties [J]. J. Alloys Compd., 2016, 686: 55
[17] Chen S D, Ke F J, Zhou M, et al. Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al [J]. Acta Mater., 2007, 55: 3169
[18] Gao W J, Xing S M, Lei J X. Effect of bonding temperature and holding time on properties of hollow structure diffusion bonded joints of TC4 alloy [J]. SN Appl. Sci., 2020, 2: 1960
[19] Shi C C, Lu Z, Zhang K F, et al. Microstructure evolution and mechanical properties of γ-TiAl honeycomb structure fabricated by isothermal forging and pulse current assisted diffusion bonding [J]. Intermetallics, 2018, 99: 59
[20] Liu T, Leazer J D, Brewer L N. Particle deformation and microstructure evolution during cold spray of individual Al-Cu alloy powder particles [J]. Acta Mater., 2019, 168: 13
[21] Xiong J T, Peng Y, Samiuddin M, et al. Common mechanical properties of diffusion bonded joints and their corresponding microstructure features [J]. J. Mater. Eng. Perform., 2020, 29: 3277
[22] Wei J K, Feng B, Ishikawa R, et al. Direct imaging of atomistic grain boundary migration [J]. Nat. Mater., 2021, 20: 951
doi: 10.1038/s41563-020-00879-z pmid: 33432148
[23] Shen Z, Arioka K, Lozano-Perez S. A study on the diffusion-induced grain boundary migration ahead of stress corrosion cracking crack tips through advanced characterization [J]. Corros. Sci., 2021, 183: 109328
[24] Beke D L, Kaganovskii Y, Katona G L. Interdiffusion along grain boundaries—Diffusion induced grain boundary migration, low temperature homogenization and reactions in nanostructured thin films [J]. Prog. Mater. Sci., 2018, 98: 625
[25] Liu X, Xu L, Zhang S. Molecular dynamics simulation of Ti-6Al-4V diffusion bonding behavior under different process parameters [J]. Mater. Tehnol., 2020, 54: 365
[26] Liu X G, Zhang S, Li B Y, et al. Molecular dynamics simulation of TC4 aging phase transition and diffusion bonding [J]. Rare Met. Mater. Eng., 2018, 47: 3045
刘小刚, 张 顺, 李百洋 等. TC4时效相变及扩散连接的分子动力学模拟 [J]. 稀有金属材料与工程, 2018, 47: 3045
[27] Zhao Y, Xie B J, Zhang J L, et al. Effects of surface roughness on interface bonding performance for 316H stainless steel in hot-compression bonding [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 771
[28] Zheng R X, Du J P, Gao S, et al. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
[29] Kondo S, Mitsuma T, Shibata N, et al. Direct observation of individual dislocation interaction processes with grain boundaries [J]. Sci. Adv., 2016, 2: e1501926
[30] Zhang J Y, Xu B, ul Haq Tariq N, et al. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys [J]. J. Mater. Sci. Technol., 2020, 40: 54
doi: 10.1016/j.jmst.2019.08.044
[31] Zhu Q, Cao G, Wang J W, et al. In situ atomistic observation of disconnection-mediated grain boundary migration [J]. Nat. Mater., 2019, 10: 156
[32] Liu H X, Wang Y J, Liu F, et al. Effect of solution aging treatment on microstructure and properties of 7A52 aluminum alloy CMT + P welded joint [J]. Rare Met. Mater. Eng., 2023, 52: 1905
刘洪旭, 王艳杰, 刘 峰 等. 固溶时效处理对7A52铝合金CMT + P焊接接头组织及性能的影响 [J]. 稀有金属材料与工程, 2023, 52: 1905
[33] Ding C, Wang C L, Li F, et al. Effects of solid solution, cooling rates and aging treatments on microstructure and mechanical properties of TC4-DT alloy [J]. Rare Met. Mater. Eng., 2020, 49: 962
丁 灿, 汪常亮, 李 峰 等. 固溶-冷速-时效对TC4-DT合金显微组织和力学性能的影响 [J]. 稀有金属材料与工程, 2020, 49: 962
[34] Zhao Z, Chen J, Guo S, et al. Influence of α/β interface phase on the tensile properties of laser cladding deposited Ti-6Al-4V titanium alloy [J]. J. Mater. Sci. Technol., 2017, 33: 675
[35] Zhang H, Li J L, Ma P Y, et al. Effect of grain boundary migration on impact toughness of 316L diffusion bonding joints [J]. Mater. Res. Express, 2019, 6: 076535
[1] YANG Fan, PEI Shichao, LUO Xinrui, CHEN Yuxiang, LI Ningyu, CHANG Yongqin. Microstructure Evolution and Mechanical Properties of 6061 Aluminum Alloy Fabricated by Friction Stir Additive Manufacturing[J]. 金属学报, 2025, 61(8): 1129-1140.
[2] ZHAO Zhuoya, MENG Lingjian, LIN Peng, CAO Xiaoqing. Microstructure Evolution and Texture Formation Mechanism of α Phase During Continuous Through-Transus Thermal Compression of TC4 Titanium Alloy[J]. 金属学报, 2025, 61(5): 717-730.
[3] LEI Yunlong, YANG Kang, XIN Yue, JIANG Zitao, TONG Baohong, ZHANG Shihong. Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy[J]. 金属学报, 2025, 61(5): 731-743.
[4] BAO Chengli, LI Hao, HU Li, ZHOU Tao, TANG Ming, HE Qubo, LIU Xiangguo. Construction of Hot Processing Map of Solutionized Mg-10Gd-6Y-1.5Zn-0.5Zr Alloy and Microstructure Evolution[J]. 金属学报, 2025, 61(4): 632-642.
[5] TANG Liting, GUO Qianying, LI Chong, DING Ran, LIU Yongchang. Advances in Secondary Phase Evolution and Performance Enhancement of Allvac 718Plus Superalloy[J]. 金属学报, 2025, 61(1): 43-58.
[6] ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. 金属学报, 2025, 61(1): 165-176.
[7] LIU Guanghui, WANG Weiguo, Rohrer Gregory S, CHEN Song, LIN Yan, TONG Fang, FENG Xiaozheng, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in a Dynamically Recrystallized Al-Zn-Mg-Cu Alloy Compressed at Elevated Temperature[J]. 金属学报, 2024, 60(9): 1165-1178.
[8] ZHANG Xingxing, LUTZ Andreas, GAN Weimin, MAAWAD Emad, KRIELE Armin. Effect of Annealing Heat Treatment on the Macroscopic and Microscopic Deformation Behavior of Additively Manufactured AlSi10Mg Alloy[J]. 金属学报, 2024, 60(8): 1091-1099.
[9] LI Yawei, XIE Guang, KE Yubin, LU Yuzhang, HUANG Yaqi, ZHANG Jian. In Situ Small-Angle Neutron Scattering Study of Precipitation and Evolution Behavior of Secondary Phases in Ni-Based Superalloys[J]. 金属学报, 2024, 60(8): 1100-1108.
[10] YANG Ruize, ZHAI Ruzong, REN Shaofei, SUN Mingyue, XU Bin, QIAO Yanxin, YANG Lanlan. Evolution and Healing Mechanism of 1Cr22Mn16N High Nitrogen Austenitic Stainless Steel Interface Microstructure During Plastic Deformation Bonding[J]. 金属学报, 2024, 60(7): 915-925.
[11] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[12] YU Hua, LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Effect of Carbide Characteristics on Damage of Cold Deformed GH3536 Alloy and Its Control[J]. 金属学报, 2024, 60(4): 464-472.
[13] CHEN Shenghu, WANG Qiyu, JIANG Haichang, RONG Lijian. Effect of δ-Ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application[J]. 金属学报, 2024, 60(3): 367-376.
[14] TIAN Xiaosheng, LU Zhengguan, XU Lei, WU Jie, YANG Rui. Hot Isostatic Densification of Inconel 718 Powder Alloy and Elimination of Prior Particle Boundaries[J]. 金属学报, 2024, 60(11): 1487-1498.
[15] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
No Suggested Reading articles found!