Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1199-1206    DOI: 10.11900/0412.1961.2016.00393
Orginal Article Current Issue | Archive | Adv Search |
DESIGN OF FORGING METHODS OF HEALING DEFECTS IN INGOTS EFFECTIVELY
Dianzhong LI1,Xuan MA1,2,3,Bin XU1,4(),Mingyue SUN1,4
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China
3 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China
4 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Dianzhong LI, Xuan MA, Bin XU, Mingyue SUN. DESIGN OF FORGING METHODS OF HEALING DEFECTS IN INGOTS EFFECTIVELY. Acta Metall Sin, 2016, 52(10): 1199-1206.

Download:  HTML  PDF(6552KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Large forgings are the fundamental parts of many kinds of key equipment, and large ingots are the basis of large forgings. There are severe metallurgical defects in large ingots, such as porosities, shrinkage cavities and gas cavities. The continuity of material is damaged by the defects, which must be eliminated during forging process. Using FEM simulation, it is found that void shape is the most important parameter affecting void closing during hot forging. Height-diameter ratio of the void is defined to describe the effect of void shape. The simulation results show that the larger height-diameter ratio of the void, the harder it is for the void to close. Based on these results, wide anvil radial forging (WRF) method is proposed. WRF method can concentrate the strain on the center of the ingot; make the height-diameter ratio of the voids smallest and heal shrinkage cavities effectively. Another one direction heavy forging method is proposed to be used on smaller forging machines. Using this method, the billet is forged along the same direction for two passes. This method can heal defects effectively with small pressure. Based on interface healing rules, temperature dwelling forging method for forging tube plates are proposed. A tube plate with defects is repaired using this method. These forging methods have been used on industrial experiments, and have been proved to be able to heal the defects in the billets and increase qualified rate of the forgings.

Key words:  void closure      wide anvil radial forging      one direction heavy forging      temperature dwelling forging     
Received:  02 September 2016     
ZTFLH:     
Fund: Supported by National Natural Science Foundation of China (No.U1508215), National Key Research and Development Program of China (No.2016YFB0300401) and Liaoning BaiQianWan Talents Program (No.【2015】 12)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00393     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1199

Fig.1  Effect of void shape on critical height reduction ratio[10]
Fig.2  Void shapes and strain distribution of samples with an ellipse void under different reduction ratios[28]
(a) original shape (void height-diameter ratio h/d=3)
(b) reduction ratio of 20%
(c) reduction ratio of 32.5%
(d) void closed under reduction ratio of 41.5%
Fig.3  Simulation of void crushing using wide anvil radial forging[10]
(a) strain distribution after wide anvil radial forging
(b) void shape after wide anvil radial forging
Fig.4  Picture of the continuous casting billet[10]
(a) section of the continuous casting billet
(b) local amplification of the center of the billet
Fig.5  Forging processes of the continuous casting billet[28]
(a) heating before forging (b) wide-anvil radial forging (c) cogging (d) rounding to final dimension
Fig.6  Macrostructure of forged continuous casting billet using wide anvil radial forging method[28]
(a) cross section of the billet (b) local amplification of the center of billet
Fig.7  Macrostructures of defects in the center of the long casting ingot
Fig.8  Photo of long casting ingot after two forging passes along the same direction
Fig.9  Tube plates (a) and sketch of defect area (unit: mm) (b)[28]
Fig.10  Die positioning during forging of the tube plate and its defect area[28]
[1] Li S J, Sun M Y, Liu H W, Li D Z.Acta Metall Sin, 2011; 47: 946
[1] (李世键, 孙明月, 刘宏伟, 李殿中. 金属学报, 2011; 47: 946)
[2] Wang J Q, Fu P X, Liu H W, Li D Z, Li Y Y.Mater Des, 2012; 35: 446
[3] Li D Z, Chen X Q, Fu P X, Ma X P, Liu H W, Chen Y, Cao Y F, Luan Y K, Li Y Y.Nat Commun, 2014; 5: 5572
[4] Kang D T, Ye G B.Materials and Heat Treatment of Large Forgings. Beijing: Longmen Bookstore, 1998: 73
[4] (康大韬, 叶国斌. 大型锻件材料及热处理. 北京: 龙门书局, 1998: 73)
[5] Tkocz M, Kusiak J, Grosman F.Acta Metall Slovaca, 2007; 13: 221
[6] Kim P H, Chun M S, Yi J J, Moon Y H.J Mater Process Technol, 2002; 130: 516
[7] Chun M S, Van Tyne C J, Moon Y H.Steel Res Int, 2006; 77: 116
[8] Dudra S P, Im Y T.Int J Mach Tools Manufact, 1990; 30: 65
[9] Kim Y D, Cho J R, Bae W B.J Mater Process Technol, 2011; 211: 1005
[10] Xu B, Sun M Y, Li D Z.Acta Metall Sin, 2012; 48: 1194
[10] (徐斌, 孙明月, 李殿中. 金属学报, 2012; 48: 1194)
[11] Park C Y, Yang D Y.J Mater Process Technol, 1996; 57: 129
[12] Park C Y, Yang D Y.J Mater Process Technol, 1997; 72: 32
[13] Wang Z T, Liu Z, Ren M.Chin J Mech Eng, 1989; 25(3): 51
[13] (王祖唐, 刘庄, 任猛. 机械工程学报, 1989; 25(3): 51)
[14] Wang Z T, Liu Z, Ren M.Chin J Mech Eng, 1989; 25(4): 47
[14] (王祖唐, 刘庄, 任猛. 机械工程学报, 1989; 25(4): 47)
[15] Lee Y S, Lee S U, Van Tyne C J, Joo B D, Moon Y H.J Mater Process Technol, 2011; 211: 1136
[16] Kakimoto H, Arikawa T, Takahashi Y, Tanaka T, Imaida Y.J Mater Process Technol, 2010; 210: 415
[17] Banaszek G, Stefanik A.J Mater Process Technol, 2006; 177: 238
[18] Chen K, Yang Y T, Shao G J, Liu K J.Comput Mater Sci, 2012; 51: 72
[19] Zhang X X, Cui Z S, Chen W, Li Y.J Mater Process Technol, 2009; 209: 1950
[20] Tanaka M, Ono S, Tsuneno M, Iwadate T.Adv Technol Plast, 1987; 11: 1035
[21] Tanaka M, Ono S, Tsuneno M.J Jpn Soc Technol Plast, 1987; 28: 238
[21] (田中光之, 小野信市, 常野誠丸.塑性と加工, 1987; 28: 238)
[22] Ono S, Minami K, Ochiai T, Iwadate T, Nakata S I.Trans Jpn Soc Mech Eng, 1995: 2141
[22] (小野信市, 南克之, 落合朋之, 岩舘忠雄, 中田進一. 日本機械学會論文集: c編, 1995: 2141)
[23] Zhang H L, Yang J G, Sun J.Acta Metall Sin, 2002; 38: 1015
[23] (张海龙, 杨君刚, 孙军. 金属学报, 2002; 38: 1015)
[24] Wei D B, Han J T, Xie J X, Fu C G, Wang L Z, He Y X.Acta Metall Sin, 2000; 36: 622
[24] (韦东滨, 韩静涛, 谢建新, 付晨光, 王连忠, 贺毓辛. 金属学报, 2000; 36: 622)
[25] Liu L J, Cui Z S.J Plast Eng, 2010; 17(1): 1
[25] (刘丽娟, 崔振山. 塑性工程学报, 2010; 17(1): 1)
[26] Ma Q X, Zhong Y X, Cao Q X.J Tsinghua Univ (Sci Technol), 1999; 39(11): 94
[26] (马庆贤, 钟约先, 曹起骧. 清华大学学报(自然科学版), 1999; 39(11): 94)
[27] Cui Z S, Ren G S, Xu B Y, Xu C G, Liu G H.J Tsinghua Univ (Sci Technol), 2003; 43(2): 227
[27] (崔振山, 任广升, 徐秉业, 徐春国, 刘桂华. 清华大学学报(自然科学版), 2003; 43(2): 227)
[28] Xu B.PhD Dissertation, University of Chinese Academy of Sciences, Beijing, 2014
[28] (徐斌. 中国科学院大学博士学位论文, 北京, 2014)
[1] XU Bin SUN Mingyue LI Dianzhong. THE VOID CLOSE BEHAVIOR OF LARGE INGOTS DURING HOT FORGING[J]. 金属学报, 2012, 48(10): 1194-1200.
No Suggested Reading articles found!