Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (9): 1113-1120    DOI: 10.3724/SP.J.1037.2013.00268
Current Issue | Archive | Adv Search |
PREPARATION AND CHARACTERIZATION OF ANTICORROSION SELF-HEALING AND HYDROPHOBIC COATING ON ALUMINUM ALLOY
PAN Xiaoming, WU Junsheng, XIAO Kui, GAO Shujun, PEI Lihong, TIAN Ran, LI Xiaogang
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

PAN Xiaoming, WU Junsheng, XIAO Kui, GAO Shujun, PEI Lihong, TIAN Ran, LI Xiaogang. PREPARATION AND CHARACTERIZATION OF ANTICORROSION SELF-HEALING AND HYDROPHOBIC COATING ON ALUMINUM ALLOY. Acta Metall Sin, 2013, 49(9): 1113-1120.

Download:  PDF(2397KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminum alloy has been widely used as the basic material in many industries because of its low density and high strength to weight ratio. Poor resistance to corrosion, however, limits the variety of practical applications of aluminum alloy. Traditionally, this problem was faced with the use of chromate conversion coatings which result in effective corrosion protection because of the self-healing property. However, the presence of toxic hexavalent chromium compounds makes those coatings very hazardous to the environment. Consequently, it is necessary to develop new environmentally compliant, chromate (VI)-free alternatives. Recently, sol-gel technology provides a new promising approach to prepare protective coatings on aluminum alloy. It has many advantages, such as the simple operation and environmental protection, etc. In this work, an Ormosil coating was developed on aluminum alloy through the sol-gel method using triethoxyoctylsilane (TEOCS) and tetraethylorthosilicate (TEOS) as the precursors. The sol-gel coatings were deposited by dip-coating method on aluminum alloy substrate. The sol-gel coatings doped with different concentrations of cerium salt (Ce(NO3)3•6H2O) were investigated. Surface morphology, wettability, anti-corrosion and self-healing of the sol-gel coatings non-doped and doped cerium salt were characterized by using atomic force microscopy, contact angle measurements, electrochemical impedance spectroscopy and scanning electrochemical microscopy. The hydrophobic of the coatings was evaluated by means of contact angle measurements. The corrosion resistance of the coatings was investigated by means of electrochemical impedance spectroscopy measurements, and the anti-corrosion, self-healing properties were discussed based on equivalent circuit fitting. The corrosion behavior of the damaged sol-gel coatings was studied by scanning electrochemical microscopy. The results indicated that it had a marked effect on the surface morphology, corrosion resistance and hydrophobicity when cerium salt was added to the Ormosil sol-gel coating. The contact angle of the Ormosil sol-gel coating is about 92.0°. Cerium salt doped coatings have a better hydrophobicity due to marked improvement of the surface morphology. This positive effect was more evident when the concentration of the doped cerium salt is 0.005 mol/L in the silane solution. It was found that cerium salt dopedcoatings were less resistant to corrosion than non-doped coating at initial immersion. However, the coating doped with 0.005 mol/L cerium salt rendered improved protection after longer time immersion because of the inhibitive action of Ce3+. It can be released at the defects, hindering the further corrosion reactions at defective sites and showing the self-healing ability of the doped with cerium salt Ormosil sol-gel coating.

Key words:  aluminum alloy      sol-gel      cerium salt      anti-corrosion      self-healing, hydrophobic     
Received:  14 May 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00268     OR     https://www.ams.org.cn/EN/Y2013/V49/I9/1113

[1] Jerman I, Vuk A S, Kozelj M, Orel B, Kovac J.Langmuir, 2008; 24: 5029

[2] Jerman I, Orel B, Vuk A S, Kozelj M, Kovac J.Thin Solid Films, 2010; 518: 2710
[3] Jerman I, Vuk A S, Kozelj M, Segl F,Orel B.  Prog Org Coat, 2011; 72: 334
[4] Hench L L, West J K.  Chem Rev, 1990; 90: 33
[5] Gusmano G, Montesperelli G, Rapone M, Padeletti G, Cusma A,Kaciulis S, Mezzi A, Maggio R D.  Surf Coat Technol, 2007; 201: 5822
[6] Hassannejad H, Shahrabi T, Aliofkhazraei M.  Surf Eng, 2009; 25: 393
[7] Hamdy A S, Butt D P.  J Mater Process Technol, 2007; 181: 76
[8] Du Y J, Damron M, Tang G, Zheng H X, Chu C J, Osborne J H.  Prog Org Coat, 2001; 41: 226
[9] Zandi-Zand R, Ershad-Langroudi A, Rahimi A J.  Non-Cryst Solids, 2005; 351: 1307
[10] Tavandashti N P, Sanjabi S, Shahrabi T.  Prog Org Coat, 2009; 65: 182
[11] Li H, Li C, Wang J Y.  Acta Mater Compos Sin, 2010; 27: 38
(李恒, 李澄, 王加余. 复合材料学报, 2010; 27: 38)
[12] Gonzalez E, Pavez J, Azocar I, Zagal J H, Zhou X, Melo F, Thompson G E,Paz M A.  Electrochim Acta, 2011; 56: 7586
[13] Wang D, Bierwagen G P.  Prog Org Coat, 2009; 64: 327
[14] Gu G, Zhang Z, Dang H.  Mater Res Bull, 2004; 39: 1037
[15] Ganbavle V V, Latthe S S, Amahadik S, Bangi U K H, Mahadik S A, Rao A V.Surf Coat Technol, 2011; 205: 5338
[16] Purcar V, Stamatin I, Cinteza O, Petcu C, Raditoiu V, Ghiurea M, Miclaus T,Andronie A.  Surf Coat Technol, 2012; 206: 4449
[17] Li J, Cao J, Huo L.  Mater Lett, 2012; 87: 146
[18] Zhang X X, Xia B B, Ding B, Zhang Y L, Luo J H, Jiang B.  Mater Lett, 2013,http://dx.doi. org/10.1016/j.matlet.2013.04.016
[19] Zaharescu M, Predoana L, Barau A.  Corros Sci, 2009; 51: 1998
[20] Akid R, Gobara M, Wang H.  Electrochim Acta, 2011; 56: 2483
[21] Tavandashti N P, Sanjabi S.  Prog Org Coat, 2010; 69: 384
[22] Hinton B R W, Arnott D R, Ryan N E.  Met Forum, 1984; 7: 211
[23] Machkova M, Matter E A, Kozhukharov S.  Corros Sci, 2013; 69: 396
[24] Shi H, Han E, Liu F C.  Corros Sci, 2011; 53: 2374
[25] Shi H, Liu F C, Han E.  Mater Chem Phys, 2010; 124: 291
[26] Lakshmi R V, Yoganandan G, Kavya K T.  Prog Org Coat, 2013; 76: 367
[27] Zhang J T, Yang C Y, Pan L, Li C D.  Acta Metall Sin, 2008; 44: 1372
(张金涛, 杨春勇, 潘亮, 李春东. 金属学报, 2008; 44: 1372)
[28] Voevodin N N, Kurdziel J W, Mantz R.  Surf Coat Technol, 2006; 20: 1080
[29] Wittmar A, Wittmar M, Ulrich A, Caparrotti H, Veith M.  J Sol-Gel Sci Technol, 2012; 61: 600
[30] Zhao K, Yang B P, Zhang J Y.  J Mater Sci Eng, 2010; 28: 448
(赵坤, 杨保平, 张俊彦. 材料科学与工程学报, 2010; 28: 448)
[31] Luo H Y, Wang F, Wang J G, Li Y N.  Mater Prot, 2011; 44: 64
(罗和义, 王芳, 王景刚, 李彦妮. 材料保护, 2011; 44: 64)
[32] Li C H, Zhao Z B, Chen Y Q.  Sci Technol Chem Ind, 2005; 13: 26
(李春红, 赵之彬, 陈玉清. 化工科技, 2005; 13: 26)
[33] Li D C, Tong Z, Chen F F.  Membr Sci Technol, 2011; 31: 29
(李大川, 同帜, 陈方方. 膜科学与技术, 2011; 31: 29)
[34] Peng S, Zhao W, Zeng Z, Li H, Xue Q, Wu X.  J Sol-Gel Sci Technol, 2013; 66: 133
[35] Zheludkevich M L, Yasakau K A, Bastos A C, Karavai O V, Ferreira M G S.  Electrochem Commun,2007; 9: 2622
[36] Cao F H, Zhang Z, Cheng Y L, Li J F, Zhang J Q, Cao C N.  Acta Metall Sin (Engl Lett),2003; 16: 319
[37] Kasten L S, Grant J T, Grebasch N, Voevodin N, Arnold F E, Donley M S.Surf Coat Technol, 2001; 140: 11
[38] Gonzalez-Garcia Y, Mol J M C, Muselle T, Graeve I D, Assche G V,Scheltjens G, Mele B V, Terryn H.  Electrochem Commun, 2011; 13: 169
[39] Pust S E, Maier W, Wittstock G.  Z Phys Chem, 2008; 22: 463
[40] Niu L, Yin Y, Guo W, Lu M, Qin R, Chen S.  J Mater Sci, 2009; 44: 4511
[41] Izquierdo J, Nagy L, Varga A, Bitter I, Nagy G, Souto R M.Electrochim Acta, 2012; 59: 398
[42] Souto R M, Santana J J, Fernandez-Merida L, Gonzalez S.  Electrochim Acta, 2011; 56: 9596
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[7] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[8] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[9] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[10] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[11] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[12] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[13] LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun. Aluminum Alloys: Solute Atom Clusters and Their Strengthening[J]. 金属学报, 2021, 57(11): 1484-1498.
[14] LI Jichen, FENG Di, XIA Weisheng, LIN Gaoyong, ZHANG Xinming, REN Minwen. Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy[J]. 金属学报, 2020, 56(9): 1255-1264.
[15] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
No Suggested Reading articles found!