Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface
ZHOU Xiaobin1(), ZHAO Zhanshan2, WANG Wanxing1, XU Jianguo1, YUE Qiang1
1.School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China 2.ESP Department, Rizhao Steel Holding Group Co., Ltd., Rizhao 276806, China
Cite this article:
ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface. Acta Metall Sin, 2023, 59(11): 1523-1532.
The flow and interaction between slag, metals, and bubbles are very complicated phenomena in metallurgical processes, such as desulfurization in hot metal pretreatment, steelmaking process in a converter, and second refining process. The molten steel or hot metal can be entrained into the slag when a bubble or bubbles flow through the slag-metal interface during the metallurgical process. The bubble entrainment behavior can increase the heat and mass transfer and, in turn, increase the chemical reaction efficiency of the slag-metal interface. Investigating the entrainment behavior helps in understanding the interaction between bubbles and liquid phases. The current study focuses on the effects of bubbles and slag properties on the bubble entrainment behaviors at the slag-metal interface. The results show that the bubble size is the most important factor influencing the entrainment, followed by the slag density. The slag viscosity and interfacial tension of the slag-metal interface show a weaker effect on the entrainment. In particular, the entrainment volume of steel and maximum area of the slag-metal interface increase by 7.41 and 3.67 times when the bubble diameter increased from 10 to 16 mm, respectively. When the slag density increases from 2000 to 5000 kg/m3, the entrainment volume of steel and maximum area of the slag-metal interface increase by 62.3% and 13.1%, respectively. The increasing in slag viscosity and interfacial tension is less affected by slag entrainment and interface area. The entrainment volume of steel and maximum area of the slag-metal interface are decreased by 30.6% and 6.4% when the interfacial tension of the slag-metal interface increases from 0.65 to 1.10 N/m, respectively. Similarly, when the slag viscosity increases from 0.05 to 2.0 Pa·s, the entrainment volume of steel and maximum area of the slag-metal decrease by 18.4% and 10.2%, respectively.
Table 1 Physical parameters of the applied fluid for the experiment
Fig.2 Schematic of the computational domain and boundary conditions (d—diameter)
Fig.3 Schematic of mesh of the geometric model
Parameter
Value
Unit
Molten steel density
6080
kg·m-3
Molten steel viscosity
0.0062
Pa·s
Molten steel density surface tension
1.7
N·m-1
Bubble density
1.62
kg·m-3
Bubble viscosity
2.125 × 10-5
Pa·s
Bubble diameter
10, 12, 14, 16
mm
Slag density
2000, 3000, 4000, 5000
kg·m-3
Slag viscosity
0.05, 0.5, 1, 2
Pa·s
Slag-metal interfacial tension
0.65, 0.8, 0.95, 1.1
N·m-1
Table 2 Physical parameters of the fluids for numerical simulations[27]
Fig.4 Variations of bubble entrainment in different oil-water systems
Fig.5 Comparisons between the mathematical (a) and experimental (b) results of bubble rising process
Fig.6 Comparison between the mathmatical and experimental results of bubble entrainment
Fig.7 Variations of entrainment volume of molten steel as a function of time
Fig.8 Influences of bubble diameter (a), slag density (b), slag viscosity (c), and slag-metal interfacial tension (d) on the entrainment volume of molten steel
Fig.9 Variations of slag-metal interfacial area as a fun-ction of time
Fig.10 Influences of bubble size (a), slag density (b), slag viscosity (c), and slag-metal interfacial tension (d) on the interfacial area
1
Feng J X. Application of desulphurization technique by magnesium injection in molten iron [J]. Met. Mater. Metall. Eng., 2007, 35(4): 21
冯建新. 铁水喷镁脱硫技术的应用 [J]. 金属材料与冶金工程, 2007, 35(4): 21
2
Wang D G, Cheng N L, Zhou X B. Research on the effect of bottom blowing on bath stirring in a 250 t converter [J]. Chin. J. Process Eng., 2020, 20: 678
Mazumdar D, Dhandapani P, Sarvanakumar R. Modeling and optimisation of gas stirred ladle systems [J]. ISIJ Int., 2017, 57: 286
doi: 10.2355/isijinternational.ISIJINT-2015-701
4
Iguchi M, Nakamura K I, Tsujino R. Mixing time and fluid flow phenomena in liquids of varying kinematic viscosities agitated by bottom gas injection [J]. Metall. Mater. Trans., 1998, 29B: 569
5
Chen Z P, Zhu M Y, Wen G H, et al. Effect of submerged entry nozzle argon blowing on slab quality [J]. Iron Steel, 2009, 44(7): 28
doi: 10.1080/03019233.2016.1153026
Li B K, Yin H B, Zhou C Q, et al. Modeling of three-phase flows and behavior of slag/steel interface in an argon gas stirred ladle [J]. ISIJ Int., 2008, 48: 1704
doi: 10.2355/isijinternational.48.1704
7
Wei G S, Zhu R, Cheng T, et al. Study on the impact characteristics of coherent supersonic jet and conventional supersonic jet in EAF steelmaking process [J]. Metall. Mater. Trans., 2018, 49B: 361
8
Zhao C, Chen W, Zhang L F, et al. Numerical simulation of multiphase flow in converter top blowing process [J]. China Metall., 2018, 28(suppl.1) : 1
De Jesús Villela-Aguilar J, Ramos-Banderas J Á, Hernández-Bocanegra C A, et al. Optimization of the mixing time using asymmetrical arrays in both gas flow and injection positions in a dual-plug ladle [J]. ISIJ Int., 2020, 60: 1172
doi: 10.2355/isijinternational.ISIJINT-2019-688
10
Hibbeler L C, Liu R, Thomas B G. Review of mold flux entrainment mechanisms and model investigation of entrainment by shear-layer instability [A]. Proceedings of the 7th ECCC [C]. Dusseldorf, Germany, 2011: 1
11
Yu H Q, Zhu M Y. The interfacial behavior of molten steel and liquid slag in slab continuous casting mold with electromagnetic brake and argon gas injection [J]. Acta Metall. Sin., 2008, 44: 1141
Yang H L, He P, Zhai Y C. Removal behavior of inclusions in molten steel by bubble wake flow based on water model experiment [J]. ISIJ Int., 2014, 54: 578
doi: 10.2355/isijinternational.54.578
13
Li B, Lu H B, Zhong Y B, et al. Numerical simulation for the influence of EMS position on fluid flow and inclusion removal in a slab continuous casting mold [J]. ISIJ Int., 2020, 60: 1204
doi: 10.2355/isijinternational.ISIJINT-2019-666
14
Han Z J, Holappa L. Formation of metal droplets from gas bubbles bursting on iron melt [J]. Steel Res., 2001, 72: 434
doi: 10.1002/srin.2001.72.issue-11-12
15
Han Z J, Holapp L. Bubble bursting phenomenon in gas/metal/slag systems [J]. Metall. Mater. Trans., 2003, 34B: 525
16
Han Z J, Holappa L. Characteristics of iron entrainment into slag due to rising gas bubbles [J]. ISIJ Int., 2003, 43: 1698
doi: 10.2355/isijinternational.43.1698
17
Ekengård J, Andersson A M T, Jönsson P G. Distribution of metal droplets in top slags during ladle treatment [J]. Ironmaking Steelmaking, 2008, 35: 575
doi: 10.1179/174328108X318914
18
Yoshida H, Liu J, Kim S J, et al. Influence of the interfacial tension on the droplet formation by bubble rupture in Sn(Te) and salt system [J]. ISIJ Int., 2016, 56: 1902
doi: 10.2355/isijinternational.ISIJINT-2016-303
19
Song D Y, Maruoka N, Gupta G S, et al. Influence of bottom bubbling rate on formation of metal emulsion in Al-Cu alloy and molten salt system [J]. ISIJ Int., 2012, 52: 1018
doi: 10.2355/isijinternational.52.1018
20
Reiter G, Schwerdtfeger K. Observations of physical phenomena occurring during passage of bubbles through liquid/liquid interfaces [J]. ISIJ Int., 1992, 32: 50
doi: 10.2355/isijinternational.32.50
21
Greene G A, Chen J C, Conlin M T. Onset of entrainment between immiscible liquid layers due to rising gas bubbles [J]. Int. J. Heat Mass Trans., 1988, 31: 1309
doi: 10.1016/0017-9310(88)90073-7
22
Zhao H L, Wang J Q, Zhang W L, et al. Bubble motion and interfacial phenomena during bubbles crossing liquid-liquid interfaces [J]. Processes, 2019, 7: 719
doi: 10.3390/pr7100719
23
Singh K K, Gebauer F, Bart H J. CFD Simulation of the phenomenon of passage of a bubble through the interface between two initially quiescent liquids [J]. Chem. Ing. Tech., 2015, 87: 1047
doi: 10.1002/cite.v87.8
24
Natsui S, Takai H, Kumagai T, et al. Multiphase particle simulation of gas bubble passing through liquid/liquid interfaces [J]. Mater. Trans., 2014, 55: 1707
doi: 10.2320/matertrans.M2014245
25
Boyer F, Lapuerta C. Study of a three component Cahn-Hilliard flow model [J]. ESAIM: Math. Model. Numer. Anal., 2006, 40: 653
doi: 10.1051/m2an:2006028
26
Boyer F, Lapuerta C, Minjeaud S, et al. Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows [J]. Transp. Porous Med., 2010, 82: 463
doi: 10.1007/s11242-009-9408-z
27
Chen J X. Handbook of Steelmaking Data and Diagrams [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2010: 275
LIU Jincai;LU Jiufang Department of Chemical Engineering; Tsinghua University; Beijing Department of Chemical Engineering; Tsinghua University;Beijing 100084. KINETICS OF COPPER EXTRACTION BY N530-HEPTANE[J]. 金属学报, 1990, 26(4): 93-97.
[5]
LI Jing;HUANG Kexiong;WANG Zaoji;LIU Jun;GUO Chuntai Central South University of Technology; ChangSha Changchun Institute of Applied Chemistry; Academia Sinica professor;Faculty of Metallurgical Physical Chemistry; Central South University of Technology; Changsha 410012. INTERFACIAL PHENOMENA BETWEEN Al-SALT-ELECTRODE[J]. 金属学报, 1990, 26(1): 86-90.