Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (11): 1523-1532    DOI: 10.11900/0412.1961.2022.00218
Current Issue | Archive | Adv Search |
Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface
ZHOU Xiaobin1(), ZHAO Zhanshan2, WANG Wanxing1, XU Jianguo1, YUE Qiang1
1.School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
2.ESP Department, Rizhao Steel Holding Group Co., Ltd., Rizhao 276806, China
Cite this article: 

ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface. Acta Metall Sin, 2023, 59(11): 1523-1532.

Download:  HTML  PDF(1758KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The flow and interaction between slag, metals, and bubbles are very complicated phenomena in metallurgical processes, such as desulfurization in hot metal pretreatment, steelmaking process in a converter, and second refining process. The molten steel or hot metal can be entrained into the slag when a bubble or bubbles flow through the slag-metal interface during the metallurgical process. The bubble entrainment behavior can increase the heat and mass transfer and, in turn, increase the chemical reaction efficiency of the slag-metal interface. Investigating the entrainment behavior helps in understanding the interaction between bubbles and liquid phases. The current study focuses on the effects of bubbles and slag properties on the bubble entrainment behaviors at the slag-metal interface. The results show that the bubble size is the most important factor influencing the entrainment, followed by the slag density. The slag viscosity and interfacial tension of the slag-metal interface show a weaker effect on the entrainment. In particular, the entrainment volume of steel and maximum area of the slag-metal interface increase by 7.41 and 3.67 times when the bubble diameter increased from 10 to 16 mm, respectively. When the slag density increases from 2000 to 5000 kg/m3, the entrainment volume of steel and maximum area of the slag-metal interface increase by 62.3% and 13.1%, respectively. The increasing in slag viscosity and interfacial tension is less affected by slag entrainment and interface area. The entrainment volume of steel and maximum area of the slag-metal interface are decreased by 30.6% and 6.4% when the interfacial tension of the slag-metal interface increases from 0.65 to 1.10 N/m, respectively. Similarly, when the slag viscosity increases from 0.05 to 2.0 Pa·s, the entrainment volume of steel and maximum area of the slag-metal decrease by 18.4% and 10.2%, respectively.

Key words:  slag-metal interface      bubble entrainment      interfacial tension      mathematical simulation      physical simulation     
Received:  05 May 2022     
ZTFLH:  TF7  
Fund: National Natural Science Foundation of China(51704006);National Natural Science Foundation of China(51774004)
Corresponding Authors:  ZHOU Xiaobin, Tel: 18955536370, E-mail: zxbahut@ahut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00218     OR     https://www.ams.org.cn/EN/Y2023/V59/I11/1523

Fig.1  Schematic of experimental setup
MaterialDensity / (kg·m-3)Viscosity / (Pa·s)Surface tension / (N·m-1)Interfacial tension / (N·m-1)
Water10001 × 10-40.0728-
Bubble1.172.125 × 10-5--
Silicone oil (10 mm·s-1)9409.4 × 10-30.0190.0108
Silicone oil (100 mm·s-1)9649.64 × 10-20.02090.0311
Paraffin760.52.8 × 10-30.0290.05
Table 1  Physical parameters of the applied fluid for the experiment
Fig.2  Schematic of the computational domain and boundary conditions (d—diameter)
Fig.3  Schematic of mesh of the geometric model
ParameterValueUnit
Molten steel density6080kg·m-3
Molten steel viscosity0.0062Pa·s
Molten steel density surface tension1.7N·m-1
Bubble density1.62kg·m-3
Bubble viscosity2.125 × 10-5Pa·s
Bubble diameter10, 12, 14, 16mm
Slag density2000, 3000, 4000, 5000kg·m-3
Slag viscosity0.05, 0.5, 1, 2Pa·s
Slag-metal interfacial tension0.65, 0.8, 0.95, 1.1N·m-1
Table 2  Physical parameters of the fluids for numerical simulations[27]
Fig.4  Variations of bubble entrainment in different oil-water systems
Fig.5  Comparisons between the mathematical (a) and experimental (b) results of bubble rising process
Fig.6  Comparison between the mathmatical and experimental results of bubble entrainment
Fig.7  Variations of entrainment volume of molten steel as a function of time
Fig.8  Influences of bubble diameter (a), slag density (b), slag viscosity (c), and slag-metal interfacial tension (d) on the entrainment volume of molten steel
Fig.9  Variations of slag-metal interfacial area as a fun-ction of time
Fig.10  Influences of bubble size (a), slag density (b), slag viscosity (c), and slag-metal interfacial tension (d) on the interfacial area
1 Feng J X. Application of desulphurization technique by magnesium injection in molten iron [J]. Met. Mater. Metall. Eng., 2007, 35(4): 21
冯建新. 铁水喷镁脱硫技术的应用 [J]. 金属材料与冶金工程, 2007, 35(4): 21
2 Wang D G, Cheng N L, Zhou X B. Research on the effect of bottom blowing on bath stirring in a 250 t converter [J]. Chin. J. Process Eng., 2020, 20: 678
王多刚, 程乃良, 周小宾. 250吨转炉底吹对熔池搅拌的影响研究 [J]. 过程工程学报, 2020, 20: 678
doi: 10.12034/j.issn.1009-606X.219281
3 Mazumdar D, Dhandapani P, Sarvanakumar R. Modeling and optimisation of gas stirred ladle systems [J]. ISIJ Int., 2017, 57: 286
doi: 10.2355/isijinternational.ISIJINT-2015-701
4 Iguchi M, Nakamura K I, Tsujino R. Mixing time and fluid flow phenomena in liquids of varying kinematic viscosities agitated by bottom gas injection [J]. Metall. Mater. Trans., 1998, 29B: 569
5 Chen Z P, Zhu M Y, Wen G H, et al. Effect of submerged entry nozzle argon blowing on slab quality [J]. Iron Steel, 2009, 44(7): 28
doi: 10.1080/03019233.2016.1153026
陈志平, 朱苗勇, 文光华 等. 连铸板坯浸入式水口吹氩工艺研究 [J]. 钢铁, 2009, 44(7): 28
6 Li B K, Yin H B, Zhou C Q, et al. Modeling of three-phase flows and behavior of slag/steel interface in an argon gas stirred ladle [J]. ISIJ Int., 2008, 48: 1704
doi: 10.2355/isijinternational.48.1704
7 Wei G S, Zhu R, Cheng T, et al. Study on the impact characteristics of coherent supersonic jet and conventional supersonic jet in EAF steelmaking process [J]. Metall. Mater. Trans., 2018, 49B: 361
8 Zhao C, Chen W, Zhang L F, et al. Numerical simulation of multiphase flow in converter top blowing process [J]. China Metall., 2018, 28(suppl.1) : 1
赵 冲, 陈 威, 张立峰 等. 转炉顶吹过程多相流数值模拟 [J]. 中国冶金, 2018, 28(): 1
9 De Jesús Villela-Aguilar J, Ramos-Banderas J Á, Hernández-Bocanegra C A, et al. Optimization of the mixing time using asymmetrical arrays in both gas flow and injection positions in a dual-plug ladle [J]. ISIJ Int., 2020, 60: 1172
doi: 10.2355/isijinternational.ISIJINT-2019-688
10 Hibbeler L C, Liu R, Thomas B G. Review of mold flux entrainment mechanisms and model investigation of entrainment by shear-layer instability [A]. Proceedings of the 7th ECCC [C]. Dusseldorf, Germany, 2011: 1
11 Yu H Q, Zhu M Y. The interfacial behavior of molten steel and liquid slag in slab continuous casting mold with electromagnetic brake and argon gas injection [J]. Acta Metall. Sin., 2008, 44: 1141
于海岐, 朱苗勇. 板坯结晶器电磁制动和吹氩过程的钢/渣界面行为 [J]. 金属学报, 2008, 44: 1141
12 Yang H L, He P, Zhai Y C. Removal behavior of inclusions in molten steel by bubble wake flow based on water model experiment [J]. ISIJ Int., 2014, 54: 578
doi: 10.2355/isijinternational.54.578
13 Li B, Lu H B, Zhong Y B, et al. Numerical simulation for the influence of EMS position on fluid flow and inclusion removal in a slab continuous casting mold [J]. ISIJ Int., 2020, 60: 1204
doi: 10.2355/isijinternational.ISIJINT-2019-666
14 Han Z J, Holappa L. Formation of metal droplets from gas bubbles bursting on iron melt [J]. Steel Res., 2001, 72: 434
doi: 10.1002/srin.2001.72.issue-11-12
15 Han Z J, Holapp L. Bubble bursting phenomenon in gas/metal/slag systems [J]. Metall. Mater. Trans., 2003, 34B: 525
16 Han Z J, Holappa L. Characteristics of iron entrainment into slag due to rising gas bubbles [J]. ISIJ Int., 2003, 43: 1698
doi: 10.2355/isijinternational.43.1698
17 Ekengård J, Andersson A M T, Jönsson P G. Distribution of metal droplets in top slags during ladle treatment [J]. Ironmaking Steelmaking, 2008, 35: 575
doi: 10.1179/174328108X318914
18 Yoshida H, Liu J, Kim S J, et al. Influence of the interfacial tension on the droplet formation by bubble rupture in Sn(Te) and salt system [J]. ISIJ Int., 2016, 56: 1902
doi: 10.2355/isijinternational.ISIJINT-2016-303
19 Song D Y, Maruoka N, Gupta G S, et al. Influence of bottom bubbling rate on formation of metal emulsion in Al-Cu alloy and molten salt system [J]. ISIJ Int., 2012, 52: 1018
doi: 10.2355/isijinternational.52.1018
20 Reiter G, Schwerdtfeger K. Observations of physical phenomena occurring during passage of bubbles through liquid/liquid interfaces [J]. ISIJ Int., 1992, 32: 50
doi: 10.2355/isijinternational.32.50
21 Greene G A, Chen J C, Conlin M T. Onset of entrainment between immiscible liquid layers due to rising gas bubbles [J]. Int. J. Heat Mass Trans., 1988, 31: 1309
doi: 10.1016/0017-9310(88)90073-7
22 Zhao H L, Wang J Q, Zhang W L, et al. Bubble motion and interfacial phenomena during bubbles crossing liquid-liquid interfaces [J]. Processes, 2019, 7: 719
doi: 10.3390/pr7100719
23 Singh K K, Gebauer F, Bart H J. CFD Simulation of the phenomenon of passage of a bubble through the interface between two initially quiescent liquids [J]. Chem. Ing. Tech., 2015, 87: 1047
doi: 10.1002/cite.v87.8
24 Natsui S, Takai H, Kumagai T, et al. Multiphase particle simulation of gas bubble passing through liquid/liquid interfaces [J]. Mater. Trans., 2014, 55: 1707
doi: 10.2320/matertrans.M2014245
25 Boyer F, Lapuerta C. Study of a three component Cahn-Hilliard flow model [J]. ESAIM: Math. Model. Numer. Anal., 2006, 40: 653
doi: 10.1051/m2an:2006028
26 Boyer F, Lapuerta C, Minjeaud S, et al. Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows [J]. Transp. Porous Med., 2010, 82: 463
doi: 10.1007/s11242-009-9408-z
27 Chen J X. Handbook of Steelmaking Data and Diagrams [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2010: 275
陈家祥. 炼钢常用图表数据手册 [M]. 第 2版, 北京: 冶金工业出版社, 2010: 275
[1] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[2] JIA Hao ZHANG Zhenqiang YU Zhan DENG Kang LEI Zuosheng REN Zhongming. INFLUENCE OF MAGNETIC FIELD INTENSITY MATCH OF FC MOLD II ON METAL FLOW[J]. 金属学报, 2012, 48(9): 1049-1056.
[3] WANG Yin ZHANG Zhenqiang YU Zhan JIA Hao DENG Kang LEI Zuosheng REN Zhongming. EXPERIMENTAL STUDY ON FLOWIN SLAB MOLD CONTROLLED BY JET–PATTERN MAGNETIC FIELD[J]. 金属学报, 2011, 47(10): 1285-1291.
[4] LIU Jincai;LU Jiufang Department of Chemical Engineering; Tsinghua University; Beijing Department of Chemical Engineering; Tsinghua University;Beijing 100084. KINETICS OF COPPER EXTRACTION BY N530-HEPTANE[J]. 金属学报, 1990, 26(4): 93-97.
[5] LI Jing;HUANG Kexiong;WANG Zaoji;LIU Jun;GUO Chuntai Central South University of Technology; ChangSha Changchun Institute of Applied Chemistry; Academia Sinica professor;Faculty of Metallurgical Physical Chemistry; Central South University of Technology; Changsha 410012. INTERFACIAL PHENOMENA BETWEEN Al-SALT-ELECTRODE[J]. 金属学报, 1990, 26(1): 86-90.
[6] LI Jing;HUANG Kexiong;CHEN Xinmin Central South University of Technology; Changsha. INTERFACIAL TENSION BETWEEN SLAG AND MATTE[J]. 金属学报, 1989, 25(3): 96-101.
No Suggested Reading articles found!