Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (6): 826-836    DOI: 10.11900/0412.1961.2022.00162
Research paper Current Issue | Archive | Adv Search |
Behavior of Hydrogen Absorption and Desorption in Y-doped Ti Films
LI Cong, WANG Meng, TU Hanjun, SHI Liqun()
Institute of Modern Physics, Fudan University, Shanghai 200433, China
Cite this article: 

LI Cong, WANG Meng, TU Hanjun, SHI Liqun. Behavior of Hydrogen Absorption and Desorption in Y-doped Ti Films. Acta Metall Sin, 2024, 60(6): 826-836.

Download:  HTML  PDF(2249KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Alloying is often used to improve resistance to hydrogen-induced pulverization and cracking of hydrogen storage materials such as titanium and zirconium. However, it often affects the hydrogen storage performance of the material itself. Ti-Y alloys exhibit good mechanical properties, and they can effectively suppress hydrogen embrittlement. The properties of hydrogen absorption and desorption were investigated experimentally and theoretically in the present work. Y was uniformly doped into Ti films as a substitution atom using direct current magnetron sputtering. In addition, a Ni film of about 5 nm was subsequently deposited onto all sample surfaces to reduce surface contamination. Deuterium gas (D2) was used for hydrogen absorption experiment. Hydrogen absorption results show that the deuterium concentration in Ti-Y films increases with the increase of Y concentration. Combined with the density functional theory (DFT) calculation, the effects of Y doping on the hydrogen absorption properties of Ti could be summarized as follows: (1) the binding energy of Y to H calculated by DFT is stronger than that of Ti, thereby increasing the concentration of D absorbed; (2) Y has a strong affinity for O to form Y2O3, which reduces O impurity concentration in Ti film and facilitates more D atoms to enter the Ti lattice to increase the amount of D absorption; (3) Y substitutes for the Ti atom to increase the binding energy of Ti—H adjacent to Y, making the D atom less likely to escape, and to reduce the diffusion barrier of D around Ti, which is distant from Y, making it easy for D to diffuse deeper into the sample. Therefore, the concentration of D absorbed in Ti samples increases with the increase of Y concentration. With regard to the properties of D desorbed in Ti-Y samples, the results show that the D desorption activation energy of the deuteride Ti-Y film could be increased by doping Y. The D desorption temperature is determined by the D thermal desorption kinetics of the Ni/Ti-Y film system, and Y doping may increase the apparent binding energy and diffusion activation energy for D of the overall Ti lattice. The surface potential barrier has an important effect on D desorbed from Ti. Furthermore, Y doping has a certain degree of influence on the hydrogen absorption and desorption performance of Ti thin films.

Key words:  magnetron sputtering      ion beam analysis      density functional theory      diffusion      apparent activation energy     
Received:  08 April 2022     
ZTFLH:  O647  
Corresponding Authors:  SHI Liqun, professor, Tel: 13761509463, E-mail: lqshi@fudan.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00162     OR     https://www.ams.org.cn/EN/Y2024/V60/I6/826

Fig.1  Schematic of magnetron sputtering composite target
Structure typeSpace groupSpace group No.Cell parameter
a / nmb / nmc / nmα / (°)β / (°)γ / (°)
α-TiP63/mmc1940.294870.294870.461469090120
TiH2Fm3¯m2250.442750.442750.44275909090
Table 1  Structural parameters of α-Ti and TiH2 unitcell
Fig.2  H diffusion paths in α-Ti (black arrows) (The blue (including the green), white, and purple balls represent Ti, H, and Y atoms, respectively; O1, O2, O3 represent octahedral interstitial sites (OIS) 1, 2, and 3, respectively; TIS—tetrahedron interstitial sites)
Fig.3  H diffusion paths in TiH2 (black arrows) (The blue, white, and purple balls represent Ti, H, and Y atoms, respectively; T1, T2 represent TIS 1 and 2, respectively)
StructureBinding energy / eVDiffusion activation energy / eV
Undoped YDoped YUndoped YDoped Y (near Y, far from Y)

α-Ti

-

-

Path 1: 0.733

Path 2: 1.987

Path 3: 0.563

Path 1: 1.605, 0.721

Path 2: 4.369, 1.906

Path 3: 1.215, 0.616

TiH2Site 1: 1.136Site 1: 1.167Path 1: 1.101Path 1: 1.885, 1.070
Site 2: 1.136Site 2: 1.102Path 2: 0.965Path 2: 0.993, 0.961
Site 3: 1.348Site 3: 1.197
Table 2  Calculation results of hydrogen binding energy and diffusion activation energy in α-Ti and TiH2
Fig.4  Energy barriers for a H atom to need to be overcome in passing through different diffusion paths in α-Ti (Ti32) (a) and TiH2 (Ti32H64) (b) before and after Y doping
Fig.5  Schematic of H at different positions in calculating the binding energy of H in Y-doped TiH2 (The gray, orange, green, and pink balls all represent the H atoms of the TiH2 matrix; the blue and purple balls represent the Ti and Y atoms, respectively; the white ball represents the H atom located in OIS near the Y atom)
Structure typeBondPopulationLength / nm
Ti32 + (OIS)HH 1—Ti 240.110.207939
H 1—Ti 250.110.207980
H 1—Ti 310.110.210424
H 1—Ti 270.110.210441
H 1—Ti 220.110.210450
H 1—Ti 180.110.210462
Ti31Y + (OIS)HH 1—Ti 160.250.196828
H 1—Ti 22-0.040.215428
H 1—Ti 30-0.040.215478
H 1—Ti 6-0.090.216495
H 1—Ti 14-0.090.216544
H 1—Y 10.750.231456
Ti32H64H 57—Ti 290.170.191691
H 57—Ti 320.170.191692
H 57—Ti 310.170.191692
H 57—Ti 300.170.191690
Ti31YH64H 57—Y 10.780.216871
H 57—Ti 29-0.020.191911
H 57—Ti 30-0.030.191911
H 57—Ti 31-0.020.191912
H 61—Ti 130.170.192944
H 61—Ti 160.180.192419
H 61—Ti 290.170.194045
H 61—Ti 300.170.194046
H 53—Ti 90.170.192053
H 53—Ti 120.160.191819
H 53—Ti 260.160.191820
H 53—Ti 270.160.190320
Table 3  Bonding order and length of interatomic bonds in α-Ti (Ti32) and TiH2 (Ti32H64) before and after Y doping
Fig.6  RBS experimental and simulated spectra of TiY0.13 before (a) and after (b) absorbing deuterium (RBS—Rutherford backscattering spectrometry; insets are the corresponding local enlargements of spectra)
Fig.7  ERDA experimental and simulated spectra of TiY0.13D0.78 sample after absorbing deuterium (ERDA—elastic recoil detection analysis)
Fig.8  Depth profiles of D concentration in Ti films with Y concentration after absorbing deuterium (Dashed lines indicate estimated values)
SampleBefore/after hydrogenationThickness / (1015 atoms·cm-2)Atomic fraction of Ti / %Atomic fraction of Y / %Atomic fraction of D / %
NiTi

Ti

(TiD0.63)

Before57706010000
After501130061.50038.50

TiY0.08

(TiY0.08D0.73)

Before48720092.507.500
After451220055.114.5940.30

TiY0.13

(TiY0.13D0.78)

Before50637088.8011.200
After451080052.446.5641.00
Table 4  Element concentration and film thickness before and after deuterium absorption measured by ion beam analysis
Fig.9  GIXRD spectra of Ti and TiY0.08 films before (a) and after (b) absorbing deuterium
Fig.10  XPS full scan spectra of TiD0.63 and TiY0.13D0.78 after absorbing deuterium (a), and XPS narrow scan spectra of Y3d in TiY0.13D0.78 (b) and Ti2p in TiD0.63 and TiY0.13D0.78 (c)
Fig.11  Energy states of atomic and molecular hydrogen on the surface and in the bulk of metal (Es is the heat of solution for 12H2 molecules; EC is the energy barrier for conversion of 12H2 molecules to chemisorbed state H; EC' is the energy barrier for conversion of adsorbed H to molecular hydrogen; EA is the energy barrier for transformation of adsorbed H into dissolved H; EA' is the energy barrier for transformation of dissolved H into adsorbed H; QD is the diffusion activation energy; Eb is the binding energy between H and host atom; EDe is the de-trapping activation energy; E' is the saddle point energy)
Fig.12  Thermal desorption spectra of TiD0.63 (a) and TiY0.13D0.78 (b) samples after absorbing deuter-ium (only the D2 signal is shown)
Fig.13  Relationships between heating rate (v) and thermal desorption peak temperature (TP) of TiD0.63 and TiY0.13D0.78 (R2—goodness of fit)
1 Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414: 353
2 Beavis L C, Miglionico C J. Structural behavior of metal tritide films [J]. J. Less Common Met., 1972, 27: 201
3 Duan Y M, Wang W D, Ding W, et al. IBA investigation on the effect of Ti-Mo interdiffusion on the D concentration in TiD x /Mo films [J]. Nucl. Instrum. Methods Phys. Res., 2020, 470B: 61
4 Hirooka Y, Miyake M, Sano T. A study of hydrogen absorption and desorption by titanium [J]. J. Nucl. Mater., 1981, 96: 227
5 Tal-Gutelmacher E, Eliezer D. Hydrogen cracking in titanium-based alloys [J]. J. Alloys Compd., 2005, 404-406: 621
6 Zhao Y, Zheng H, Liu S, et al. Investigation of the structure and the property of hydrogen storage Ti-Mo alloys [J]. Acta Metall. Sin., 2003, 39: 89
赵 越, 郑 华, 刘 实 等. Ti-Mo合金的结构及吸放氢性能研究 [J]. 金属学报, 2003, 39: 89
7 Shi L Q, Zhou Z Y, Zhao G Q, et al. Hydrogenation characteristics and observation of disintegration conditions of Ti-Mo and Ni-coated Ti-Mo thin films [J]. J. Vac. Sci. Technol., 2001, 19A: 240
8 Shi L Q, Zhou Z Y, Zhao G Q. Hydrogen storage and hydrogen embrittlement of Ti-Mo alloy films [J]. Acta Metall. Sin., 2000, 36: 530
施立群, 周筑颖, 赵国庆. Ti-Mo合金薄膜的储氢特性和抗氢脆能力 [J]. 金属学报, 2000, 36: 530
9 Bing W Z, Long X G, Zhu Z L, et al. Structure and thermodynamic aspect of Ti-Hf alloys and their deuterides [J]. Chin. J. Inorg. Chem., 2010, 26: 1008
邴文增, 龙兴贵, 朱祖良 等. Ti-Hf合金的结构和吸氘热力学性质 [J]. 无机化学学报, 2010, 26: 1008
10 Liu B L, Liu S, Wang L B. Investigation on helium bubbles shape in Ti and Ti alloy by transmission electron microscopy [J]. At. Energy Sci. Technol., 2008, 42: 799
刘本良, 刘 实, 王隆保. Ti及Ti合金中氦泡形貌的透射电镜研究 [J]. 原子能科学技术, 2008, 42: 799
doi: 10.7538/yzk.2008.42.09.0799
11 Zhao E T, Chen Y Y, Kong F T, et al. Effect of yttrium on microstructure and mold filling capacity of a near-α high temperature titanium alloy [J]. China Foundry, 2012, 9: 344
12 Heo K H, Munirathnam N R, Lim J W, et al. Effect of oxygen and yttrium doping on the electrical resistivity and hardness of titanium metal obtained by electron beam melting [J]. Mater. Chem. Phys., 2008, 112: 923
13 Zhang J C, Wu E D, Liu S. Effects of Y on helium behavior in Ti-Y alloy films [J]. J. Nucl. Mater., 2014, 454: 119
14 Li C J, Xiong L Y, Wu E D, et al. Effect of yttrium on nucleation and growth of zirconium hydrides [J]. J. Nucl. Mater., 2015, 457: 142
15 Yun S, Oyama S T. Correlations in palladium membranes for hydrogen separation: A review [J]. J. Membrane Sci., 2011, 375: 28
16 Verma N, Krishnamurthy G, Tichelaar F D, et al. Controlling morphology and texture of sputter-deposited Pd films by tuning the surface topography of the (Ti) adhesive layer [J]. Surf. Coat. Technol., 2019, 359: 24
17 Lim H R, Eom N S A, Cho J H, et al. Hydrogen gettering of titanium-palladium/palladium nanocomposite films synthesized by cosputtering and vacuum-annealing [J]. Int. J. Hydrogen Energy, 2018, 43: 19990
18 Zhang Q J, Qi Q H, Cao Z, et al. Effect of C contamination on H2 uptake of Ti film [J]. Vac. Sci. Technol., 1997, 17: 45
张强基, 漆其鸿, 曹 昭 等. 碳污染对钛膜吸氢能力影响的研究 [J]. 真空科学与技术, 1997, 17: 45
19 Griessen R, Huiberts J N, Kremers M, et al. Yttrium and lanthanum hydride films with switchable optical properties [J]. J. Alloys Compd., 1997, 253-254: 44
20 Shi L Q, Zhou Z Y, Zhao G Q. Hydrogenation and thermal release of hydrogen in titanium thin films [J]. At. Energy Sci. Technol., 2000, 34: 328
施立群, 周筑颖, 赵国庆. 钛薄膜氢化及热释放特性研究 [J]. 原子能科学技术, 2000, 34: 328
21 Zhang W Z, Tang X H, Li J Q, et al. Deuterium retention in carbon-tungsten co-deposition layers prepared by RF magnetron sputtering [J]. Acta Phys. Sin., 2013, 62: 195202
张文钊, 唐兴华, 李嘉庆 等. 氘在碳钨共沉积层中的滞留行为研究 [J]. 物理学报, 2013, 62: 195202
22 Zhao G Q, Ren C G. Nuclear Analysis Technique [M]. Beijing: Atomic Energy Press, 1989: 1
赵国庆, 任炽刚. 核分析技术 [M]. 北京: 原子能出版社, 1989: 1
23 L′ Ecuyer J, Brassard C, Cardinal C, et al. An accurate and sensitive method for the determination of the depth distribution of light elements in heavy materials [J]. J. Appl. Phys., 1976, 47: 381
24 Mayer M. Improved physics in SIMNRA 7 [J]. Nucl. Instrum. Meth., 2014, 332B: 176
25 Li M Q, Yao X Y. First-principles study of α-titanium and β-titanium crystal structure with hydrogen [J]. Rare Met. Mater. Eng., 2013, 42: 530
李淼泉, 姚晓燕. 置氢α-钛和β-钛晶体结构的第一性原理研究 [J]. 稀有金属材料与工程, 2013, 42: 530
26 Liu S, Wang Y G. First-principles of hydrogen diffusion mechanism in titanium crystals [J]. Chin. J. Nonferrous Met., 2015, 25: 3100
刘 松, 王寅岗. 氢在钛晶体中扩散行为的第一性原理 [J]. 中国有色金属学报, 2015, 25: 3100
27 Liu X K, Zhang Y, Zheng Z, et al. Structural and thermodynamic properties of TiH2 from first-principles calculations [J]. Sci. Sin. Phys. Mech. Astron., 2011, 41: 207
刘显坤, 张 旸, 郑 洲 等. 第一性原理研究TiH2的结构和热力学性质 [J]. 中国科学: 物理学 力学 天文学, 2011, 41: 207
28 Huang X T, Qing P L, Qin C S, et al. Influences of transition elements (V, Ti, Y) on hydrogen storage property of Mg-Al alloy [J]. Chin. J. Nonferrous Met., 2020, 30: 333
黄显吞, 卿培林, 覃昌生 等. 过渡金属V、Ti及Y的添加对Mg-Al合金储氢性能的影响 [J]. 中国有色金属学报, 2020, 30: 333
29 Zhu Y, Wang F H. First principles study on the dehydrogenation from MgH2 (001) surface by metal (Li, A1, Ti) doping [J]. Dev. Energy Sci., 2015, 3(1): 20
朱 玥, 王福合. 金属原子(Li, A1, Ti)掺杂对MgH2 (001)表面脱氢性能影响的第一性原理研究 [J]. 能源科学发展: 中英文版, 2015, 3(1): 20
30 Germán E, Luna C, Marchetti J, et al. A DFT study of dopant (Zr, Nb) and vacancies on the dehydrogenation on MgH2 (001) surface [J]. Int. J. Hydrogen Energy, 2014, 39: 1732
31 Li Y X. First-principles study on properties and hydrogen atoms diffusion of zirconium-hydrogen system [D]. Taiyuan: North University of China, 2021
李越鑫. 锆氢体系性质和氢原子扩散的第一性原理研究 [D]. 太原: 中北大学, 2021
32 Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
33 Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. J. Phys. Condens. Matter, 2002, 14: 2717
34 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
35 Han X L, Wang Q, Sun D L, et al. First-principles study of hydrogen diffusion in alpha Ti [J]. Int. J. Hydrogen Energy, 2009, 34: 3983
36 San-Martin A, Manchester F D. The H-Ti (Hydrogen-Titanium) system [J]. Bull. Alloy Phase Diagrams, 1987, 8: 30
37 Yakel H L. Thermocrystallography of higher hydrides of titanium and zirconium [J]. Acta Crystallogr., 1958, 11: 46
38 Uwamino Y, Ishizuka T, Yamatera H. X-ray photoelectron spectroscopy of rare-earth compounds [J]. J. Electron Spectrosc. Relat. Phenom., 1984, 34: 67
39 Paulin I, Mandrino D, Donik Č, et al. AES and XPS characterization of titanium hydride powder [J]. Mater. Technol., 2010, 44: 73
40 Ebihara K I, Kaburaki H. Numerical modeling of thermal desorption spectra of hydrogen: A review of thermal desorption models [J]. ISIJ Int., 2012, 52: 181
41 Zhang B, Zheng H, Liu S, et al. Hydrogen absorption and desorption of titanium [J]. At. Energy Sci. Technol., 2005, 39: 522
张 滨, 郑 华, 刘 实 等. 纯Ti吸放氢过程研究 [J]. 原子能科学技术, 2005, 39: 522
42 Martin M, Gommel C, Borkhart C, et al. Absorption and desorption kinetics of hydrogen storage alloys [J]. J. Alloys Compd., 1996, 238: 193
43 Bhosle V, Baburaj E G, Miranova M, et al. Dehydrogenation of TiH2 [J]. Mater. Sci. Eng., 2003, A356: 190
44 Shi L Q, Zhao G Q, Zhou Z Y, et al. The kinetics of hydrogen interaction with thin films [J]. At. Energy Sci. Technol., 2000, 34: 216
施立群, 赵国庆, 周筑颖 等. 储氢薄膜的吸氢动力学研究 [J]. 原子能科学技术, 2000, 34: 216
[1] WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. 金属学报, 2024, 60(5): 691-698.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[4] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[5] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[8] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[9] HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. 金属学报, 2022, 58(2): 141-154.
[10] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[11] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[12] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[13] LI Juan, ZHAO Honglong, ZHOU Nian, ZHANG Yingzhe, QIN Qingdong, SU Xiangdong. Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel[J]. 金属学报, 2021, 57(12): 1567-1578.
[14] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[15] SUN Zhengyang, YANG Chao, LIU Wenbo. Phase Field Simulations of the Sintering Process of UO2[J]. 金属学报, 2020, 56(9): 1295-1303.
No Suggested Reading articles found!