Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1379-1387    DOI: 10.11900/0412.1961.2016.00056
Orginal Article Current Issue | Archive | Adv Search |
LIQUID-LIQUID PHASE SEPARATION AND FORMA-TION OF TWO GLASSY PHASES IN Zr-Ce-Co-CuIMMISCIBLE ALLOYS
Zhongyuan WANG1,2,Jie HE1(),Baijun YANG1,Hongxiang JIANG1,Jiuzhou ZHAO1,Tongmin WANG2,Hongri HAO1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

Zhongyuan WANG,Jie HE,Baijun YANG,Hongxiang JIANG,Jiuzhou ZHAO,Tongmin WANG,Hongri HAO. LIQUID-LIQUID PHASE SEPARATION AND FORMA-TION OF TWO GLASSY PHASES IN Zr-Ce-Co-CuIMMISCIBLE ALLOYS. Acta Metall Sin, 2016, 52(11): 1379-1387.

Download:  HTML  PDF(1386KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The liquid-liquid phase separation has been used recently to design two-glassy-phase alloys with desirable mechanical, magnetic and thermal properties. The occurrence of the liquid-liquid phase separation in the Zr-Ce binary immiscible alloys can lead to the formation of two coexistent crystalline Zr-rich and Ce-rich phases after complete solidification. In this work, a new quaternary complex alloy system (ZraCeb)(1-x)(CocCud)x was designed on the basis of the addition of metastable Co-Cu immiscible alloys in the stable Zr-Ce immiscible alloys. Distribution ratio of Co and Cu in two coexistent liquids was calculated. The mechanisms of phase formation and microstructure evolution were investigated using OM, SEM, EDS, XRD and DTA. The results show that a single-phase homogeneous melt of (ZraCeb)(1-x)(CocCud)x alloys takes place the liquid-liquid phase separation during cooling through the miscibility gap. The metal elements Co and Cu are mainly concentrated in the Zr-rich and Ce-rich liquids, respectively, which results in the formation of the two coexistent Zr-Co-rich and Ce-Cu-rich liquids. It was found that the coexistent Zr-Co-rich and Ce-Cu-rich liquids undergo liquid-to-glass transition and thus form dual glassy phases under the rapid quenching, respectively. The effects of the atomic ratio of Co and Cu, the addition amount and the cooling rate on the formation of the glassy phases have been discussed in detail by combining the experimental investigation with the thermodynamic analysis. A strategy for synthesizing liquid-phase-separated metallic glasses on the basis of suitably designed immiscible alloys has been proposed. Two-glassy-phase alloys can be obtained by rapidly quenching alloy melt in which the atomic ratio of Co and Cu and the addition amount are 4∶1 and 38.5%, respectively.

Key words:  liquid-liquid      phase      separation,      Zr-Ce      immiscible      alloy,      rapid      quenching,      two-glassy-phase      alloy,      microstructure     
Received:  02 February 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51374194, 51574216 and 51271185) and Natural Science Foundation of Liaoning Province (No.2015020172)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00056     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1379

Alloy a b c d x
No.1 75 25 0 0 0
No.2 89 11 83 17 0.340
No.3 89 11 80 20 0.340
No.4 89 11 77 23 0.340
No.5 89 11 72 28 0.340
No.6 89 11 77 23 0.367
No.7 89 11 77 23 0.385
No.8 89 11 80 20 0.385
Table 1  Nominal compositions of (ZraCeb)(1-x)(CocCud)x alloys
Fig.1  Microstructure in the vicinity of the liquid-liquid phase separation boundary of No.1 alloy (a) and the locally magnified image of Zr-rich region in Fig.1a (b)
Fig.2  SEM image of the as-cast alloy No.8 (a), elements Zr (b), Co (c), Ce (d) and Cu (e) distributions along the line AB in Fig.2a, distribution ratio of elements Co (KCo) and Cu (KCu) in the two coexistent immiscible Zr and Ce liquids (f)
Fig.3  Microstructures, Ce-Cu-rich phase distribution and phase composition of No.8 alloy solidified under different cooling conditions(a) OM image of the transverse section of the suction-cast rod with 2 mm in diameter (d)(b) SEM image of core microstructure for suction-cast rod in 2 mm diameter (c) SEM image of the cross section of melt-spun alloy ribbon (d) SEM image of core microstructure of melt-spun alloy ribbon(e) average diameter and the volume fraction of the Ce-Cu-rich particles vs radial position of the rod (r) in Fig.3a(f) XRD spectra of the suction-cast rod and ribbon
Fig.4  XRD spectra of melt-spun ribbons of No.2~No.8 alloys
Fig.5  DTA heating traces for No.3, No.5 and No.8 alloys at rate of 10 K/min
Fig.6  Microstructures of Zr-Co-rich region (a) and Ce-Cu-rich region (b) originated from the liquid-liquid phase separation of No.8 alloy under the normal solidification
Fig.7  Microstructures of Zr-Co-rich region produced from the liquid-liquid phase separation of No.3 (a) and No.5 (b) alloys
[1] Jia J, Zhao J Z, Guo J J, Liu Y.Immiscible Alloys and Their Manufacturing Technique. Harbin: Harbin Institure of Technology Press, 2002: 1
[1] (贾均, 赵九洲, 郭景杰, 刘源. 难混溶合金及其制备技术. 哈尔滨: 哈尔滨工业大学出版社, 2002: 1 )
[2] Massalski T B, Okamoto H, Subramanian P R, Kacprzak L.Binary Alloy Phase Diagrams. New York: ASM International, 1990: 1
[3] Cao C D, G?rler G P, Herlach D M, Wei B.Mater Sci Eng, 2002; A325: 503
[4] He J, Zhao J Z, Ratke L.Acta Mater, 2006; 54: 1749
[5] Wilde G, Perepezko H J.Acta Mater, 1999; 47: 3009
[6] Gr?bner J, Schmid-Fetzer R.JOM, 2005; 57(9): 19
[7] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.J Phase Equilib, 2002; 23(3): 236
[8] Mirkovic D, Gr?bner J, Schmid-Fetzer R. Acta Mater, 2008; 56: 5214
[9] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.Science, 2002; 297: 990
[10] Zhao J Z.Scr Mater, 2006; 54: 247
[11] He J, Zhao J Z, Wang X F, Gao L L.Metall Mater Trans, 2005; 36A: 2449
[12] Jiang H X, He J, Zhao J Z.Sci Rep, 2015; 5: 12680
[13] Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B.Sci Rep, 2015; 5: 16335
[14] Li J Q, Ma B Q, Min S, Lee J, Yuan Z F, Zang L K.Mater Lett, 2010; 64: 814
[15] He J, Li H Q, Zhao J Z, Dai C L.Appl Phys Lett, 2008; 93: 131907
[16] He J, Li H Q, Xing C Y, Zhao J Z.Acta Metall Sin, 2010; 46: 41
[16] (何杰, 李海权, 兴成尧, 赵九洲. 金属学报, 2010; 46: 41)
[17] Yu Y, Takaku Y, Nagasako M, Wang C P, Liu X J, Kainuma R, Ishida K.Intermetallics, 2012; 25: 95
[18] Cao C D, Gong S L, Guo J B, Song R B, Sun Z B, Yang S, Wang W M.Chin Phys, 2012; 21B: 086102
[19] He J, Jiang H X, Chen S, Zhao J Z, Zhao L.J Non-Cryst Solids, 2011; 357: 3561
[20] Ratke L, Diefenbach S.Mater Sci Eng, 1995; R15: 263
[21] Liu Y, Guo J J, Jia J. Foundry, 2000; 49(1): 11(刘源, 郭景杰, 贾均. 铸造, 2000; 49(1): 11)
[22] He J H, Sheng H W, Schilling P J, Chien C L, Ma E.Phys Rev Lett, 2001; 86: 2826
[23] Ma E.Prog Mater Sci, 2005; 50: 413
[24] Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X.Nature, 2014; 512: 177
[25] Sugiyama K, Shinohara A H, Waseda Y, Chen S, Inoue A.Mater Trans JIM, 1994; 35: 481
[26] Kündig A A, Ohnuma M, Ping D H, Ohkubo T, Hono K.Acta Mater, 2004; 52: 2441
[27] Mattern N, Kühn U, Gebert A, Gemming T, Zinkevich M, Wendrock H, Schultz L.Scr Mater, 2005; 53: 271
[28] Park E S, Jeong E Y, Lee J K, Bae J C, Kwon A R, Gebert A, Schultz L, Chang H L, Kim D H.Scr Mater, 2007; 56: 197
[29] Chang H J, Yook W, Park E S, Kyeong J S, Kim D H.Acta Mater, 2010; 58: 2483
[30] Park B J, Chang H J, Kim D H, Kim W T, Chattopadhyay K, Abinandanan T A, Bhattacharyya S.Phys Rev Lett, 2006; 96: 245503
[31] He J, Mattern N, Tan J, Zhao J Z, Kaban I, Wang Z, Ratke L, Kim D H, Kim W T, Eckert J.Acta Mater, 2013; 61: 2102
[32] He J, Matern N, Kaban I, Dai F, Song K, Yan Z, Zhao J Z, Kim D H, Eckert J.J Alloys Compd, 2015; 618: 795
[33] Hui X D, Chen G L. Bulk Metallic Glass.Beijing: Chemical Industry Press, 2007: 8
[33] (惠希东, 陈国良. 块体非晶合金. 北京: 化学工业出版社, 2007: 8)
[34] Kim D H, Kim W T, Park E S, Mattern N, Eckert J.Prog Mater Sci, 2013; 58: 1103
[35] Concustell A, Mattern N, Wendrock H, Kuehn U, Gebert A, Eckert J, Greer A L, Sort J, Baró M D.Scr Mater, 2007; 56: 85
[36] Park E S, Jeong E Y, Lee J K, Bae J C, Kwon A R, Gebert A, Schultz L, Chang H J, Kim D H.Scr Mater, 2007; 56: 197
[37] Gebert A, Kündig A A, Schultz L, Hono K.Scr Mater, 2004; 51: 961
[38] He J, Kaban I, Mattern N, Song K, Sun B, Zhao J Z, Kim D H, Eckert J, Greer A L.Sci Rep, 2016; 6: 25832
[39] Takeuchi A, Inoue A.Mater Trans, 2005; 46: 2817
[40] Liu X J, Zhang H H, Wang C P, Ishida K.J Alloys Compd, 2009; 482: 99
[41] He X C, Wang H, Liu H S, Jin Z P.Calphad, 2006; 30: 367
[42] Su X P, Zhang W J, Du Z M.J Alloys Compd, 1998; 267: 121
[43] Bo H, Zhang L G, Chen X M, Chen H M, Liu L B, Zheng F, Jin Z P.J Alloys Compd, 2009; 484: 286
[44] Palumbo M, Curiotto S, Battezzati L.Calphad, 2006; 30: 171
[45] Marangoni C. Ann Phys Chem#/magtechI#, 1871; 143: 337
[46] Ratke L, Voorhees P W.Growth and Coarsening. Berlin: Springer, 2002: 1
[47] Zhai W, Liu H M, Wei B.Mater Lett, 2015; 141: 221
[48] Li Y.Mater Trans, 2001; 42: 556
[49] Lu Z P, Liu C T.Acta Mater, 2002; 50: 3501
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[7] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[9] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[10] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[11] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[12] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[13] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[14] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[15] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
No Suggested Reading articles found!