Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1372-1378    DOI: 10.11900/0412.1961.2016.00040
Orginal Article Current Issue | Archive | Adv Search |
STRESS CORROSION CRACKING BEHAVIOR OF A NEW KIND OF ULTRAHIGH STRENGTH STEEL Cr12Ni4Mo2Co14 IN ACID ENVIRONMENT
Min SUN1(),Xiaogang LI2,Jin LI3
1 Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China;
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 3 Department of Materials Science, Fudan University, Shanghai 200433, China ;
Cite this article: 

Min SUN,Xiaogang LI,Jin LI. STRESS CORROSION CRACKING BEHAVIOR OF A NEW KIND OF ULTRAHIGH STRENGTH STEEL Cr12Ni4Mo2Co14 IN ACID ENVIRONMENT. Acta Metall Sin, 2016, 52(11): 1372-1378.

Download:  HTML  PDF(1446KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, the development of aerospace industry puts forward a higher requirement for the high strength, high toughness and good weldability of steel materials. Cr12Ni4Mo2Co14 steel is a new kind of ultrahigh strength steel, which is usually used as structure materials under complex stress/strain conditions. In this work, the stress corrosion cracking behavior of Cr12Ni4Mo2Co14 steel in acid environment was studied by slow-strain rate test (SSRT) and SEM. The results showed that the stress corrosion cracking (SCC) susceptibility of Cr12Ni4Mo2Co14 steel was enhanced by chlorine ions remarkably. The critical value of chlorine ion concentration was about 0.15%, above which, severe SCC occurred induced by chlorine ions, and the SCC cracks started from pits. The SCC mechanism of Cr12Ni4Mo2Co14 steel in acid solution containing chlorine ions can be clarified by “slide-film breaking” model. The hydrogen-charged samples of Cr12Ni4Mo2Co14 steel were sensitive to hydrogen induced cracking, and second cracks occurred on the fracture surface. The critical value of hydrogen-charged current density is 10 mA/cm2 for 30 min in solutions with pH=5, above which, the losses of strength and plasticity of Cr12Ni4Mo2Co14 steel reached to the maximum. The effects of chlorine ions and hydrogen had a complex interaction which cannot be added up directly.

Key words:  ultrahigh      strength      steel,      acid      environment,      stress      corrosion      cracking(SCC),      H,      Cl-     
Received:  26 January 2016     
Fund: Supported by National Natural Science Foundation of China (No.51501041)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00040     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1372

Fig.1  Stress-strain curves of Cr12Ni4Mo2Co14 steel in H2SO4+Na2SO4 solutions with different concentrations of Cl- [Cl-]
Fig.2  Fracture SEM images of Cr12Ni4Mo2Co14 steel in H2SO4+Na2SO4 solutions with [Cl-] of 0.15% (a) and 0.35% (b)
Fig.3  Stress-strain curves of Cr12Ni4Mo2Co14 steel in H2SO4+Na2SO4 solutions with different hydrogen-charged current densities iH
Fig.4  Fracture SEM images of Cr12Ni4Mo2Co14 steel with 0 mA/cm2 (a), 10 mA/cm2 (b) and 25 mA/cm2 (c) iH for 30 min (Inset in Fig.4b indicates secondary crack)
Fig.5  Effect of Cl- and H on stress-strain curves (a) and fracture morphology for iH=10 mA/cm2 and [Cl-]=0.15% (b) of Cr12Ni4Mo2Co14 steel in H2SO4+Na2SO4 solutions
Fig.6  Effect of [Cl-] on loss of strength Δσ[Cl-], elongation Δδ[Cl-], reduction-in-area Δψ[Cl-] and crack time tcrack of Cr12Ni4Mo2Co14 steel
Fig.7  Schematics of crack propagation process of Cr12Ni4Mo2Co14 steel in acid solutions with Cl-(a) passive film formed on the Cr12Ni4Mo2Co14 steel(b) passive film broken at the slip steps, under the tensile stress(c) the matrix steel at the broken passive film continued to dissolve (d) dissolution of the crack tip at a lower potential promoted the crack propagation process
Fig.8  Effect of iH on loss of strength Δσ[H], elongation Δδ[H], reduction-in-area Δψ[H]and crack time of Cr12Ni4Mo2Co14 steel
Fig.9  Effects of Cl- and H on the loss of strength Δσ[Cl-*H] for Cr12Ni4Mo2Co14 steel
[1] Malakondaian G, Srinivas M, Rama R P.Prog Mater Sci, 1997; 42: 209
[2] Hu Y B, Dong C F, Sun M, Xiao K, Zhong P, Li X G.Corros Sci, 2011; 53: 4159
[3] Sundarama P A, Marble D K,J Alloys Compd, 2003; 360: 90
[4] Ramadan S, Gaillet L, Tessier C, Idrissi H.Appl Surf Sci, 2008; 254: 2255
[5] Eliaz N, Shachar A, Tal B, Eliezer D.Eng Fail Anal, 2002; 9: 167
[6] Yang W, Ni R C, Hua H Z, Pourbaix A.Corro Sci, 1984; 24: 691
[7] Zhong J Y, Sun M, Liu D B, Li X G, Liu T Q.Int J Miner Metall Mater, 2010; 17: 282
[8] Liao Q C, Sun F Y, Lan F L,Acta Metall Sin, 1979; 15: 259
[8] (廖乾初, 孙福玉, 蓝芬兰. 金属学报, 1979; 15: 259)
[9] Nagao A, Smith C D, Dadfarnia M, Sofronis P, Robertson I M.Procedia Mater Sci, 2014; 3: 1700
[10] Shi X B, Yan W, Wang W, Zhao L Y, Shan Y Y, Yang K.J Iron Steel Res Int, 2015; 22: 937
[11] Zhang Y, Chu W Y, Yuan R Z, Wang Y B, Ouyang S X, Xiao J M.Acta Metall Sin, 1995; 31: 406
[11] (张跃, 褚武扬, 袁润章, 王燕斌, 欧阳世翕, 肖纪美. 金属学报, 1995; 31: 406)
[12] Rajabipour A, Melchers R E.Int J Hydrogen Energy, 2015; 40: 9388
[13] Xie Y, Zhang J S.J Nucl Mater, 2015; 466: 85
[14] Panda B, Sujata M, Madan M, Bhaumik S K.Eng Fail Anal, 2014; 36: 379
[15] Lin B J.Acta Metall Sin, 1982; 18: 350(林保军. 金属学报, 1982; 18: 350)
[16] Ye D, Li S H, Li J, Jiang W, Su J, Zhao K Y.Mater Charact, 2015; 109: 100
[17] Li M, Wang L, Almer J D.Acta Mater, 2014; 76: 381
[18] Zhang G M, Zhou Z J, Mo K, Miao Y B, Liu X, Almer J, Stubbins J F.J Nucl Mater, 2015; 467: 50
[19] Djukic M B, Zeravcic V S, Bakic G M, Sedmak A, Rajicic B.Eng Fail Anal, 2015; 58: 485
[20] Weber S, Martin M, Theisen W.Mater Sci Eng, 2011; A528: 7688
[21] Martin M, Weber S, Izawa C, Wagner S, Pundt A, Theisen W.Int J Hydrogen Energy, 2011; 36: 11195
[22] Qiao L J, Zeng Y M, Chu W Y.J Chin Soc Corros Prot, 1998; 18: 233
[22] (乔利杰, 曾一民, 褚武扬. 中国腐蚀与防护学报, 1998; 18: 233)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[6] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[7] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[8] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[9] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[10] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[11] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[12] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[14] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[15] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
No Suggested Reading articles found!