Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (5): 614-624    DOI: 10.11900/0412.1961.2015.00416
Orginal Article Current Issue | Archive | Adv Search |
DESTABILIZATION MECHANISM OF Fe-Al INHIBITION LAYER IN Zn-0.2%Al HOT-DIP GALVANIZING COATING AND RELATED THERMODYNAMIC EVALUATION
Liheng LIU,Chunshan CHE,Gang KONG(),Jintang LU,Shuanghong ZHANG
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
Cite this article: 

Liheng LIU,Chunshan CHE,Gang KONG,Jintang LU,Shuanghong ZHANG. DESTABILIZATION MECHANISM OF Fe-Al INHIBITION LAYER IN Zn-0.2%Al HOT-DIP GALVANIZING COATING AND RELATED THERMODYNAMIC EVALUATION. Acta Metall Sin, 2016, 52(5): 614-624.

Download:  HTML  PDF(1187KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The formation of a uniform Fe-Al inhibition layer with a proper thickness at steel interface during continuous hot-dip galvanizing process is a crucial issue for industrial production. The inhibition layer prohibits the nucleation and growth of brittle Fe-Zn intermetallic compounds which deteriorate the adhesion of the galvanizing coating and result in an inhomogeneous distribution of the coating. The inhibition layer was identified to be Fe2Al5 with some Zn dissolved in it. But Fe2Al5 inhibition layer was damaged with galvanized time increasing, will lose the inhibition to the Fe-Zn reaction. Nevertheless, there is no systematic and comprehensive investigation the causes of the inhibition layer is damaged. The aim of this work is to clarify the destabilization mechanism of Fe2Al5 inhibition layer. In the present study, the mass fraction of 0.2%Al was added into the zinc bath at 450 ℃ for hot-dip galvanizing. SEM was used to observe the structure characteristics of the hot-dip galvanized coating. EDS was used to quantitatively analyze the micro area components of phases and also used its line scan and mapping scan to qualitatively analyze the element change of the coating cross section. By means of the Miedema model and the Toop model, the thermodynamic values of the binary Fe-Al, Fe-Zn and ternary Fe2Al5Znx (η) intermetallic compounds (IMC) in the coatings were calculated. The fundamental reason for the Fe-Zn reaction caused by Fe2Al5 destabilization with galvanized time increasing was analyzed. The results show that because Fe-Al IMC which is generate preferentially had more stable thermodynamic property than Fe-Zn IMC, the continuous Fe2Al5 intermetallic compound inhibition layer was produced preferentially at steel and zinc bath interface which inhibit the Fe-Zn reaction. However, with the galvanized time increasing, Fe2Al5 destabilization which led to the loss of inhibitory effect of Fe-Zn reaction and produced FeZn10 (δ) . There are two kinds of destabilization mechanism of Fe2Al5 inhibition layer, one is that the local depletion of Al at Fe2Al5 and zinc bath interface result in erosion of Fe2Al5 by Zn and the formed Fe2Al5Znx caused the decrease of the systematic thermodynamic stability which led to erosion and decomposition of Fe2Al5 by Zn. At the same time, FeZn10 (δ) phase was produced between the Fe2Al5 and zinc bath interface. The phase transformation process can be described as: Fe2Al5η→L+η→L+η+δ→L+δ. The other kind of destabilization mechanism is Zn diffused to the steel substrate by Fe2Al5 grain boundaries and directly produced δ phase between Fe2Al5 and steel substrate interface, which caused outburst of Fe2Al5. The two kinds of Fe2Al5 destabilization mechanism are mutual coexistence and mutual competition, in particular conditions may be a mechanism to occupy absolute advantage.

Key words:  hot dip galvanized      Fe2Al5      IMC      thermodynamics      Miedema model      Toop model     
Received:  24 July 2015     
Fund: Supported by International Lead and Zinc Research Organization Funded Projects (No.ILZRO/IZA/CN201212), Project on the Integration of Industry, Education and Research of Guangdong Province (No.2012B091100312) and Fundamental Research Funds for the Central Universities of China (No.2012ZM0011)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00416     OR     https://www.ams.org.cn/EN/Y2016/V52/I5/614

Fig.1  Cross-sectional SEM images of coating after hot-dip galvanizing at 450 ℃ for 10 s (a), 30 s (b), 90 s (c), 300 s (d) and corresponding EDS line scan diagrams of bold arrows in Figs.a~d (a1~d1)
Micro
square
Atomic fraction / % Phase
Al Fe Zn
1 - 1.96 98.04 L
2 20.74 63.62 15.64 Rich-Al phase
3 50.24 22.98 26.78 η+δ
4 1.74 7.34 90.92 δ
5 8.21 6.93 84.86 δ
6 2.09 12.22 85.69 δ
7 57.33 20.79 21.88 η+δ
8 3.25 9.23 87.52 δ
9 4.74 7.79 87.47 δ
Table 1  EDS analysis results for micro squares 1~9 in Fig.1
Fig.2  SEM image of rectangular region in Fig.1b (a), and EDS mapping scan analyses of Al (b), Fe (c) and Zn (d)
Fig.3  Fe-Al-Zn isothermal section of the Zn corner at 450 ℃ (after <30 min of galvanizing)[32]
Element V ?* nWS W/P
Fe 7.09 4.93 5.55 1.0
Al 10.00 4.20 2.70 1.9
Zn 9.17 4.10 2.30 1.4
Table 2  Property parameters of Fe, Al and Zn elements[25]
IMC ΔHAB / (kJmol-1) GABE / (kJmol-1) aFe aAl or Zn ΔGθ / (kJmol-1)
Fe2Al5 -21.85 -19.28 6.03×10-6 0.595 -22.87
FeAl3 -19.18 -16.93 4.08×10-6 0.693 -20.31
Γ (Fe3Zn10) -2.87 -2.46 4.07×10-2 0.760 -5.71
Γ1 (Fe5Zn21) -2.68 -2.29 3.22×10-2 0.770 -5.24
δ (FeZn10) -1.12 -0.96 1.67×10-2 0.903 -2.79
ζ (FeZn13) -0.89 -0.76 1.32×10-2 0.923 -2.31
Table 3  Thermodynamic values of Fe-Al and Fe-Zn intermetallic compounds (IMC)
Fig.4  Schematic of Fe2Al5 crystal structure (a) and projection in the a axis direction (b)
Fig.5  Schematics of coating layer formation in a Zn-0.20%Al galvanizing at 450 ℃
[1] Marder A R.Prog Mater Sci, 2000; 45: 191
[2] Shao D W, He Z R, Zhang Y H, He Y.Hot Working Technol, 2012; 41: 122
[2] (邵大伟, 贺志荣, 张永宏, 何应. 热加工工艺, 2012; 41: 122)
[3] Dionne S.JOM-US, 2006; 58(3): 32
[4] Wang Y, Xing J D, Ma S Q, Liu G Z, Fu H G, Jia S.J Mater Eng Perform, 2015; 24: 2444
[5] Kim Y, Shin K S, Jeon S H, Chin K G, Lee J.Corros Sci, 2014; 85: 364
[6] Harvey G J, Mercer P D.Metall Trans, 1973; 4: 619
[7] Bélisle S, Lezon V, Gagné M.J Phase Equilib Diff, 1991; 12: 259
[8] Zhao J T.J Xiamen Univ (Nat Sci), 1996; 35: 532
[8] (赵景泰. 厦门大学学报(自然科学版), 1996; 35: 532)
[9] Campos C A, Guerrero-Mata M P, Colas R, Garza R.ISIJ Int, 2002; 42: 876
[10] Furdanowicz V, Shastry C R.Metall Mater Trans, 1999; 30A: 3031
[11] Zhang C H, Huang S, Shen J, Chen N X, Zhang C H, Huang S. Intermetallics, 2014; 52: 86
[12] Tang N Y.Metall Mater Trans, 1995; 26A: 1699
[13] Wakamatsu Y, Noguchi T, Yamane M, Noguchi F. Tetsu Hagané, 2001; 87: 138
[13] (若松良徳, 野口敬広, 山根政博, 野口文男.铁と钢, 2001; 87: 138)
[14] Yin F C, Zhao M X, Liu Y X, Han W T.Trans Nonferrous Met Soc China, 2013; 23: 556
[15] Wang K K, Hsu C W, Chang L, Gan D, Yang K C.Appl Surf Sci, 2013; 285: 458
[16] Tan P, Chen J M, Tang H P, Wang J Y, Wang J, Yang B J, Li Y N.J Func Mater, 2012; 43: 29
[17] Adachi Y, Arai M.Mater Sci Eng, 1998; A254: 305
[18] Jordan C E, Marder A R.J Mater Sci, 1997; 32: 5603
[19] Wang K K, Hsu C W, Chang L, Gan D, Yang K C.Appl Surf Sci, 2013; 285: 458
[20] Prabhudev S, Swaminathan S, Rohwerder M.Corros Sci, 2011; 53: 2413
[21] Inagaki J, Sakurai M, Watanabe T.Tetsu Hagané, 1993; 79: 1273
[21] (稲垣淳一, 櫻井理孝, 渡辺豊文.铁と钢, 1993; 79: 1273)
[22] Kato T, Nunome K, Kaneko K, Saka H. Acta Mater, 2000; 48: 2257
[23] Sun W X, Yan D R, Chen X G, Dong Y C, Li X Z.Acta Phys Sin, 2010; 59: 2228
[23] (孙文秀, 阎殿然, 陈学广, 董艳春, 李香芝. 物理学报, 2010; 59: 2228)
[24] Kato C, Koumura H, Mochizuki K, Morito N. US Pat,80106, 1995
[25] Miedema A R, Niessen A K, Deboer F R, Boom R, Matten W C.Cohesion in Metals: Transition Metal Alloys. Amsterdam: North-Holland Publishing Co., 1989: 38
[26] Zhang R F, Rajan K.Chem Phys Lett, 2014; 612: 177
[27] Ding X Y, Fan P, Han Q Y.Acta Metall Sin, 1994; 30: 49
[27] (丁学勇, 范鹏, 韩其勇. 金属学报, 1994; 30: 49)
[28] Dragan M, Dragana Z, Katayama I.J Serb Chem Soc, 2005; 70: 9
[29] Bo S, Ohnuma I, Dupin N, Kattner U R, Fries S G.Acta Mater, 2009; 57: 2896
[30] Wo?czyński W, Pogoda Z, Garze? G, Kucharska B, Sypień A, Okane T.Arch Metall Mater, 2014; 59: 1223
[31] Yoshitaka A, Masahiro A.Mater Sci Eng, 1998; A254: 305
[32] Raghavan V.J Phase Equilib Diff, 2003; 24: 546
[33] Su X P, Li Z, Yin F C, He Y H, Pan S W.Acta Metall Sin, 2008; 44: 718
[33] (苏旭平, 李智, 尹付成, 贺跃辉, 潘世文. 金属学报, 2008; 44: 718)
[34] Fu X C, Shen W X, Yao T Y, Hou W H. Physical Chemistry. Vol.II, 5th Ed., Beijing: Higher Education Press, 2004: 253
[34] (傅献彩, 沈文霞, 姚天扬, 候文华. 物理化学(下). 第五版, 北京: 高等教育出版社, 2004: 253)
[35] Tanaka T, Gokcen N A, Morita Z.Z Metallkd, 1990; 81(1): 49
[36] Jiang Z H, Liu Y, Li Y, Liang L K.J Northeastern Univ (Nat Sci), 2005; 26: 252
[36] (姜周华, 刘杨, 李阳, 梁连科. 东北大学学报(自然科学版), 2005; 26: 252)
[37] Le Q Z, Cui J Z.Acta Metall Sin, 2006; 42: 1182
[37] (乐启炽, 崔建忠. 金属学报, 2006; 42: 1182)
[38] Sun S P, Yi D Q, Zang B.Rare Met Mater Eng, 2010; 39: 1974
[38] (孙顺平, 易丹青, 臧冰. 稀有金属材料与工程, 2010; 39: 1974)
[39] Yan D, He J, Tian B, Dong Y, Li X, Zhang J.Surf Coat Technol, 2006; 201: 2662
[1] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[2] JU Tianhua, SHU Nian, HE Wei, DING Xueyong. A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions[J]. 金属学报, 2023, 59(11): 1533-1540.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[5] WANG Zumin,ZHANG An,CHEN Yuanyuan,HUANG Yuan,WANG Jiangyong. Research Progress on Fundamentals and Applications of Metal-Induced Crystallization[J]. 金属学报, 2020, 56(1): 66-82.
[6] Chengming ZHENG, Qingchao TIAN. Effect of Alloy Elements on Oxidation Behavior of Piercing Plug Steel[J]. 金属学报, 2019, 55(4): 427-435.
[7] Mingliang HUANG, Hongyu SUN. Interaction Between β-Sn Grain Orientation and Electromigration Behavior in Flip-Chip Lead-Free Solder Bumps[J]. 金属学报, 2018, 54(7): 1077-1086.
[8] Feng PAN,Li CUI,Wei QIAN,Dingyong HE,Shizhong WEI. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL-BEAM LASER KEYHOLE WELDED JOINTS OF ALUMINUM ALLOYS TO STAINLESS STEELS[J]. 金属学报, 2016, 52(11): 1388-1394.
[9] Feng LIU, Kang WANG. DISCUSSIONS ON THE CORRELATION BETWEEN THERMODYNAMICS AND KINETICS DURING THE PHASE TRANSFORMATIONS IN THE TMCP OF LOW-ALLOY STEELS[J]. 金属学报, 2016, 52(10): 1326-1332.
[10] XIE Jun, YU Jinjiang, SUN Xiaofeng, JIN Tao, SUN Yuan. CARBIDE EVOLUTION BEHAVIOR OF K416B AS-CAST Ni-BASED SUPERALLOY WITH HIGH W CONTENT DURING HIGH TEMPERATURE CREEP[J]. 金属学报, 2015, 51(4): 458-464.
[11] WU Changjun, ZHU Chenlu, SU Xuping, LIU Ya, PENG Haoping, WANG Jianhua. THERMODYNAMICAL AND KINETIC INVESTIGA-TION OF FORMATION OF PERIODIC LAYERED STRUCTURE IN TiCu/Zn INTERFACE REACTION[J]. 金属学报, 2014, 50(8): 930-936.
[12] MA Ping, WU Erdong, LI Wuhui, SUN Kai, CHEN Dongfeng. MICROSTRUCTURES AND HYDROGEN STORAGE PROPERTIES OF Ti0.7Zr0.3(Cr1-xVx)2 ALLOYS[J]. 金属学报, 2014, 50(4): 454-462.
[13] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING[J]. 金属学报, 2013, 49(1): 26-34.
[14] LI Wuhui TIAN Baohong MA Ping WU Erdong. HYDROGEN STORAGE PROPERTIES OF ScMn2 ALLOY[J]. 金属学报, 2012, 48(7): 822-829.
[15] WU Chaofeng MA Mingxing WU Aiping LIU Wenjin ZHONG Minlin ZHANG Weiming ZHANG Hongjun. MORPHOLOGIC CHARACTERISTICS OF IN SITU SYNTHESIZED CARBIDE PARTICLES IN LASER CLADDED Fe-BASED COMPOSITE COATINGS[J]. 金属学报, 2009, 45(9): 1091-1098.
No Suggested Reading articles found!