Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 822-829    DOI: 10.3724/SP.J.1037.2012.00109
论文 Current Issue | Archive | Adv Search |
HYDROGEN STORAGE PROPERTIES OF ScMn2 ALLOY
LI Wuhui1), TIAN Baohong2), MA Ping1), WU Erdong1)
1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003
Cite this article: 

LI Wuhui TIAN Baohong MA Ping WU Erdong. HYDROGEN STORAGE PROPERTIES OF ScMn2 ALLOY. Acta Metall Sin, 2012, 48(7): 822-829.

Download:  PDF(1185KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  As an important rare--earth type Laves phase compound, ScMn2 alloy is endowed certain significance in the viewpoint of either theoretical or applicable investigation. In this study, the structures of ScMn2 alloy and its hydride (deuteride) are characterized by XRD. The hydrogen activation properties, pressure-concentration-temperature (P-C-T) curves and absorption kinetic curves of ScMn2 alloy are measured using Sieverts-type hydrogenator. The desorption kinetics of the passivated hydride are determined by TG-DSC. The results show that the hydride and deuteride of the alloy retain the C14 type Laves phase structure of the parent alloy, with the volume expansions of about 25%. ScMn2 possesses outstanding activation properties and can react quickly with hydrogen (deuterium) at room temperature and atmospheric pressure. The hydrogen and deuterium storage capacities of 1 mol ScMn2 are about 3.7 mol H and 3.6 mol D at 100 kPa and 298 K. ScMn2 has low hysteresis critical temperature for absorption and desorption, good plateau characteristics and relatively low plateau pressure, hence it is suitable for the storage of hydrogen isotopes. The enthalpy and entropy for formation of ScMn2 hydride at concentration corresponding to room temperature plateau pressure are -45 kJ/mol and -80 J/(K?mol), respectively. The hydriding kinetics of the alloy can be interpreted by Johnson-Mehl-Avrami (JMA) model, with the estimated reaction order of 0.4. The apparent activation energies for hydriding and deteuriding process are estimated to be  (16±0.3) and (19±1.7) kJ/mol, respectively, the observed isotope effect on kinetics can possibly be applied to separation of hydrogen isotope. The passivated hydride can release completely at 639 K and the corresponding apparent activation energy is (144±14) kJ/mol.
Key words:  ScMn2 alloy      hydrogen activation      pressure-concentration-temperature curve      thermodynamics      kinetics     
Received:  28 February 2012     
ZTFLH: 

TG139+.7

 
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00109     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/822

[1] Pebler A, Gulbransen E A. Electrochem Technol, 1966; 4: 211

[2] Pourarian F, Fujii H, Wallace W E, Sinha V K, Kevin Smith H. J Phys Chem, 1981; 85: 3105

[3] Moriwaki Y, Gamo T, Iwaki T. J Less–Common Met, 1991; 172: 1028

[4] Li G, Nishimiya N, Satoh H, Kamegashira N. J Alloys Compd, 2005; 393: 231

[5] Guo X M, Wu E D. J Alloys Compd, 2008; 455: 191

[6] Li W H, Wu E D. J Alloys Compd, 2012; 511: 169

[7] Dwight A E. Trans Am Soc Met, 1961; 53: 479

[8] Park J M, Lee J Y. J Less–Common Met, 1991; 167: 245

[9] Kost M E, Raevskaya M V, Shilov A L, Yaropolova E I, Mikheeva V I. Russ J Inorg Chem, 1979; 24: 1803

[10] Griessen R, Driessen A, De Groot D G. J Less–Common Met, 1984; 103: 235

[11] Shilov A L, Kost M E, Kuznetsov N T. J Less–Common Met, 1985; 105: 221

[12] Hunter B A, Howard C J. LHPM: A Computer Program for Rietveld Analysis of X–ray and Neutron Powder Diffraction Patterns, ANSTO Report, 1998

[13] Srinivas G, Sankaranarayanan V, Ramaprabhu S. Int J Hydrogen Energy, 2007; 32: 2480

[14] Von Buch F, Lietzau J, Mordike B L, Pisch A, Schmid– Fetzer R. Mater Sci Eng, 1999; A263: 1

[15] Manchester F D, Khatamian D. Mater Sci Forum, 1988; 31: 261

[16] Liu B H, Kim D M, Lee K Y, Lee J Y. J Alloys Compd, 1996; 240: 214

[17] Wu E D, Li W H, Li J. Int J Hydrogen Energy, 2012; 37: 1509

[18] Hu Z L. Hydrogen Storage Materials. Beijing: Chemical Industry Press, 2002: 441

(胡子龙. 贮氢材料. 北京: 化学工业出版社, 2002: 441)

[19] Broom D P. Hydrogen Storage Materials. London: Springer–Verlag, 2011: 89

[20] Ohtani Y, Hashimoto S, Uchida H. J Less–Common Met, 1991; 172–174: 841

[21] Srinivas G, Sankaranarayanan V, Ramaprabhu S. J Alloys Compd, 2008; 448: 159

[22] Kissinger H E. Anal Chem, 1957; 29: 1702

[23] Hu R Z, Shi Q Z. Thermal Analysis Kinetics. Beijing: Science Press, 2001: 1

(胡荣祖, 史启祯. 热分析动力学. 北京: 科学出版社, 2001: 1)

[24] Fang Y Z, Liao M S, Hu L L. Thermochim Acta, 2006; 443: 179

[25] Hsieh Y C, Chou Y C, Lin C P, Hsieh T F, Shu C M. Aerosol Air Qual Res, 2010; 10: 212
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[7] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[8] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[9] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[10] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[11] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[12] WANG Zumin,ZHANG An,CHEN Yuanyuan,HUANG Yuan,WANG Jiangyong. Research Progress on Fundamentals and Applications of Metal-Induced Crystallization[J]. 金属学报, 2020, 56(1): 66-82.
[13] Chengming ZHENG, Qingchao TIAN. Effect of Alloy Elements on Oxidation Behavior of Piercing Plug Steel[J]. 金属学报, 2019, 55(4): 427-435.
[14] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[15] Ke ZHANG, Xinjun SUN, Mingya ZHANG, Zhaodong LI, Xiaoyu YE, Zhenghai ZHU, Zhenyi HUANG, Qilong YONG. Kinetics of (Ti, V, Mo)C Precipitated in γ /α Matrix of Ti-V-Mo Complex Microalloyed Steel[J]. 金属学报, 2018, 54(8): 1122-1130.
No Suggested Reading articles found!