Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (4): 458-464    DOI: 10.11900/0412.1961.2014.00543
Current Issue | Archive | Adv Search |
CARBIDE EVOLUTION BEHAVIOR OF K416B AS-CAST Ni-BASED SUPERALLOY WITH HIGH W CONTENT DURING HIGH TEMPERATURE CREEP
XIE Jun(), YU Jinjiang, SUN Xiaofeng, JIN Tao, SUN Yuan
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

XIE Jun, YU Jinjiang, SUN Xiaofeng, JIN Tao, SUN Yuan. CARBIDE EVOLUTION BEHAVIOR OF K416B AS-CAST Ni-BASED SUPERALLOY WITH HIGH W CONTENT DURING HIGH TEMPERATURE CREEP. Acta Metall Sin, 2015, 51(4): 458-464.

Download:  HTML  PDF(2292KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As-cast Ni-based superalloys with high W content are used extensively in the turbine vane of aero-engine due to their good heat resistance and temperature capability. During high temperature service, the creep deformations and microstructure evolution are occurred in the using materials, and the creep behavior mainly depends on their chemical composition and microstructure, such as size, distribution and morphology of g ' phase and carbides. Thereinto, the mophologies of carbide phases are closely related to creep resistance of the alloy. Generally, the carbide particles displaying dispersive distribution may enhance the creep resistance of the alloy, while the carbide with continuous morphologies distributed in the boundaries, they may provide easy paths for crack propagation and degrade the mechanical properties of the alloy. Besides the creep life of the alloy also depends on the microstructure evolution under high temperature. But the evolution mechanism of carbides in K416B superalloy during creep is still unclear up to now. For this reason, by means of creep property measurement and microstructure observation, the evolution behavior of precipitates in K416B Ni-based superalloy with high W content during high temperature creep has been investigated. The results show that the size of g ' phase is inhomogeneous in the as-cast alloy, and the stripe MC-carbide distribute in the inter-dendrite regions displaying Chinese structures. During high temperature creep applied stress, fine M6C carbide discontinuously precipitate in the deformed g matrix. The thermodynamics analysis indicates that the carbon element segregates in the regions of stress concentration and combines with carbide-forming elements W etc, which promoted the fine M6C carbide to precipitate from the g matrix. At the same time, the grooves are formed on the surface of stripe MC carbide, and then gradually decomposed and transformed into M6C particles. Thereinto, the additional press formed in the surface of stripe MC carbide is the main factor to promote the MC phase continuous dissolution and spheroidizing.

Key words:  K416B Ni-based superalloy      creep      carbide evolution      thermodynamics analysis     
ZTFLH:  TG132.3  
Fund: Supported by National Basic Research Program of China (Nos.2010CB631200 and 2010CB631206) and National Natural Science Foundation of China (No.50931004)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00543     OR     https://www.ams.org.cn/EN/Y2015/V51/I4/458

Fig.1  Creep curve of K416B superalloy under applied stress of 150 MPa at 1000 ℃
Fig.2  SEM images of as-cast K416B superalloy (a) γ' phase in the dendrite and inter-dendrite (b) carbide in the inter-dendrite
Fig.3  SEM images of K416B superalloy after creep for 5 h (a), 50 h (b) and 154 h (c) under applied stress of 150 MPa at 1000 ℃
Fig.4  SEM images of strip carbide in K416B superalloy after creep for 5 h (a), 50 h (b) and 154 h (c) under applied stress of 150 MPa at 1000 ℃
Fig.5  TEM images of stripe carbide in K416B superalloy during creep for 50 h (a) and 154 h (b) under applied stress of 150 MPa at 1000 ℃ (Insets show the corresponding SAED patterns of carbides)
Fig.6  TEM images of K416B superalloy after being crept to fracture (Inset in Fig.6a shows the SAED pattern of the fine carbide)

(a) fine carbide precipitating in the regions of dislocation tangles

(b) carbide hindering the dislocation movement

Fig.7  Schematic diagram of MC phase fusing during creep (PMC/g—addictive stress on MC/g interface, sMC/g—MC/g interface stress, a—included angle of the grooves, Y—carbide forming elements)

(a) stripe MC carbide

(b) interfaces tension distribution in the dissolved groove of MC phase

(c) diffusion direction of element Y

[1] Liu Y, Hu R, Li J S, Kou H C, Li H W, Chang H, Fu H Z. Mater Sci Eng, 2009; A508: 141
[2] Kim I S, Choi B G, Hong H U, Do J, Jo C Y. Mater Sci Eng, 2014; A593: 55
[3] Zhang G Q. Acta Metall Sin (Engl Lett), 2005; 18: 55
[4] Yang Y H, Yu J J, Sun X F, Jin T, Guan H R, Hu Z Q. Mater Des, 2012; 36: 699
[5] Tang B, Jiang L, Hu R, Li Q. Mater Charact, 2013; 78: 144
[6] Zhen Y R, Xie J Z. J Aeronaut Mater, 2009; 29(6): 1
(郑运荣, 谢济洲. 航空材料学报, 2009; 29(6): 1)
[7] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 2275
[8] Hou J S, Guo J T, Wu Y X, Zhou L Z, Ye H Q. Mater Sci Eng, 2010; A527: 1548
[9] Zheng L, Gu C Q, Zeng Q, Hou S E. J Aeronaut Mater, 2004; 24(1): 17
(郑 亮, 谷臣清, 曾 强, 侯淑娥. 航空材料学报, 2004; 24(1): 17)
[10] He L Z, Sun X F, Zheng Q, Hou G C, Zhang C Z, Guan H R, Hu Z Q. Mater Eng, 2004; (2): 40
(何立子, 孙晓峰, 郑 启, 侯贵臣, 张承忠, 管恒荣, 胡壮麒. 材料工程, 2004; (2): 40)
[11] Yuan C, Sun X F, Yin F S, Guan H R, Hu Z Q, Zheng Q, Yu Y. J Mater Sci Technol, 2001; 17: 425
[12] Bai G H, Li J S, Hu R, Zhang T B, Kou H C, Fu H Z. Mater Sci Eng, 2011; A528: 2339
[13] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2007; A465, 100
[14] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Sci Forum, 2007; 546-549: 1301
[15] Yang J X, Sun Y, Jin T, Sun X F, Hu Z Q. Acta Metall Sin, 2014; 50: 839
(杨金侠, 孙 元, 金 涛, 孙晓峰, 胡壮麒. 金属学报, 2014; 50: 839)
[16] Xiao X, Zeng C, Hou J S, Qin X Z, Guo J T, Zhou L Z. Acta Metall Sin, 2014; 50: 1031
(肖 璇, 曾 超, 侯介山, 秦学智, 郭建亭, 周兰章. 金属学报, 2014; 50: 1031
[17] Wang L, Wang S, Song X, Liu Y, Xu G H. Int J Fatigue, 2014; 62: 210
[18] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2006; A429: 341
[19] Seo S M, Kim I S, Lee J H, Jo C Y, Miyahara H, Ogi K. J Met Sci Technol, 2008; 24: 110
[20] Mats H,translated by Lai H Y,Liu G X. Alloy Diffusion and Thermodynamic. Beijing: Metallurgical Industry Press, 1984: 103
(Mats H 著,赖和怡,刘国勋 译. 合金扩散和热力学. 北京: 冶金工业出版社, 1984: 103)
[21] Mats H,translated by Li Q B,Wang X C. Diffusion Controlled Reactions in Alloy and Thermodynamic of Alloy. Shenyang: Liao-ning Science and Technology Press, 1984: 204
(Mats H著,李清斌,王晓春 译. 合金中的扩散相变与合金热力学. 沈阳: 辽宁科学技术出版社, 1984: 204)
[22] Lvov G, Levit V I, Kaufman M J. Metall Mater Trans, 2004; 35A: 1669
[23] Mao W M,Zhu J C,Li J,Long Y,Fan Q C. The Structure and Properties of Metallic Materials. Beijing: Tsinghua University Press, 2008: 186
(毛卫民,朱景川,郦 剑,龙 毅,范群成. 金属材料结构与性能. 北京: 清华大学出版社, 2008: 186)
[24] Tian S G, Wang M G, Li T, Qian B J, Xie J. Mater Sci Eng, 2010; A527: 5444
[25] Xie J, Tian S G, Zhou X M, Yu X F, Wang W X. Mater Sci Eng, 2012; A538: 306
[26] He L Z, Zheng Q, Sun X F, Guan H R, Hu Z Q, Tieu A K, Lu C, Zhu H T. Metall Mater Trans, 2005; 36A: 2385
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[7] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[8] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[9] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[10] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[11] WU Yupeng, ZHANG Bo, LI Jingming, ZHANG Shuangnan, WU Ying, WANG Yumin, CAI Guixi. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. 金属学报, 2020, 56(8): 1175-1184.
[12] LIU Tian, LUO Rui, CHENG Xiaonong, ZHENG Qi, CHEN Leli, WANG Qian. Investigations on the Accelerated Creep Testing of Alumina-Forming Austenitic Stainless Steel[J]. 金属学报, 2020, 56(11): 1452-1462.
[13] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[14] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[15] Wenshu TANG,Junfeng XIAO,Yongjun LI,Jiong ZHANG,Sifeng GAO,Qing NAN. Effect of Re-Heat Rejuvenation Treatment on γ′ Microstructure of Directionally SolidifiedSuperalloy Damaged by Creep[J]. 金属学报, 2019, 55(5): 601-610.
No Suggested Reading articles found!