Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 217-223    DOI: 10.11900/0412.1961.2015.00226
Orginal Article Current Issue | Archive | Adv Search |
QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT
Wen YANG1,Lifeng ZHANG1(),Ying REN1,Haojian DUAN1,Ying ZHANG1,Xianghui XIAO2
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
Cite this article: 

Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT. Acta Metall Sin, 2016, 52(2): 217-223.

Download:  HTML  PDF(2888KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Non-metallic inclusions especially oxides are detrimental to the quality of ferritic stainless steel products. Accurate characterization on inclusions is conducive to further research on the inclusion control. There are some disadvantages in traditional 2D or 3D inclusion detection methods, tomography is thus employed to characterize inclusions in steel in the current work. Oxide inclusions in the slab of Ti bearing ferritic stainless steel were characterized 3 dimensionally using high resolution synchrotron micro computed tomography (Micro-CT), and the variations of quantity, volume and size of oxide inclusions along the thickness of continuous casting slab were analyzed quantitatively and compared with the 2D results detected by ASPEX, an automated scanning SEM. It was found that non-destructive detection could be well done by Micro-CT more accurately. The detected oxides by Micro-CT were mainly global, and the number of inclusions decreased with increasing size. In general, the number density and volume fraction of oxides were largest in the center of slab thickness, and decreased with the distance from center, reached the smallest value near the surface of slab. Contrarily, the average of equivalent diameter of oxide inclusions was largest near slab surface, and was smallest near quarter of thickness on the loose side.

Key words:  synchrotron radiation      Micro-CT      quantitative 3D characterization      Ti bearing ferritic stainless steel      oxide inclusion      continuous casting slab     
Received:  17 April 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51274034, 51334002 and 51404019)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00226     OR     https://www.ams.org.cn/EN/Y2016/V52/I2/217

Fig.1  Schematic of apparatus and mechanism of Micro-CT
Fig.2  Schematics of sampling locations in slab
Fig.3  Morphologies and compositions of typical oxide inclusions in the slab of Ti bearing stainless steel
Fig.4  Morphology of inclusions extracted by electrolytic extraction using non-aqueous electrolyte
Fig.5  Morphologies and distributions of oxides in different thickness of slab detected by Micro-CT
Fig.6  Distributions of equivalent diameters (DE) of oxides in different locations of slab
Fig.7  Variation of number density in volume of oxides along thickness of slab (DE≥5 μm)
Fig.8  Variation of volume fraction of oxides along thickness of slab (DE≥5 μm)
Fig.9  Variation of average of equivalent diameter of oxides along thickness of slab (DE≥5 μm)
Fig.10  Variation of number density in area (a) and area fraction (b) of oxides along thickness of slab detected by ASPEX (≥5 μm)
Fig.11  Variation of average diameter of oxides along thickness of slab detected by ASPEX (≥5 μm)
[1] Zhang L F, Li Y L, Ren Y.Iron Steel, 2013; 48(11): 1
[1] (张立峰, 李燕龙, 任英. 钢铁, 2013; 48(11): 1)
[2] Zhang L F, Li Y L, Ren Y.Iron Steel, 2013; 48(12): 1
[2] (张立峰, 李燕龙, 任英. 钢铁, 2013; 48(12): 1)
[3] Ren Y, Zhang L F, Yang W.Steelmaking, 2014; 30(1): 71
[3] (任英, 张立峰, 杨文. 炼钢, 2014; 30(1): 71)
[4] Ha H Y, Park C J, Kwon H S.Corros Sci, 2007; 49: 1266
[5] Chang E, Zheng H G, Zhang L, Yang J.Shanghai Met, 2008; 30(6): 18
[5] (常锷, 郑宏光, 张丽, 杨军. 上海金属, 2008; 30(6): 18)
[6] Zhang L F, Yang W, Zhang X W, Luo Y, Liu Y.Iron Steel, 2014; 49(2): 1
[6] (张立峰, 杨文, 张学伟, 罗艳, 刘洋. 钢铁, 2014; 49(2): 1)
[7] Zhang L F, Zhang X W, Luo Y, Liu Y, Zhang Y, Yang W.In: The Chinese Society for Metals ed., Proc 9th CSM Steel Congress, Beijing: Metallurgical Industry Press, 2013: 1
[7] (张立峰, 张学伟, 罗艳, 刘洋, 张莹, 杨文. 见: 中国金属学会编, 第九届中国钢铁年会论文集, 北京: 冶金工业出版社, 2013: 1)
[8] Asghar Z, Requena G, Degischer H P, Cloetens P.Acta Mater, 2009; 57: 4125
[9] Maire E, Grenier J C, Daniel D, Baldacci A, Klöcker H, Bigot A.Scr Mater, 2006; 55: 123
[10] Nagasekhar A V, Cáceres C H, Kong C.Mater Charact, 2010; 61: 1035
[11] Tiryakioğlu M.Mater Sci Eng, 2008; A473: 1
[12] Maire E.Annual Rev Mater Res, 2012; 42: 163
[13] Meidani H, Desbiolles J L, Jacot A, Rappaz M.Acta Mater, 2012; 60: 2518
[14] Felberbaum M, Rappaz M.Acta Mater, 2011; 59: 6849
[15] Wan Q, Zhao H D, Zou C.Acta Metall Sin, 2013; 49: 284
[15] (万谦, 赵海东, 邹纯. 金属学报, 2013; 49: 284)
[16] Yi J, Gao Y, Lee P, Flower H, Lindley T.Metall Mater Trans, 2003; 34A: 1879
[17] Li P, Lee P, Lindley T, Maijer D, Davis G, Elliott J.Adv Eng Mater, 2006; 8: 476
[18] Wan Q, Zhao H D, Zou C.ISIJ Int, 2014; 54: 511
[19] Rashed H, Robson J, Bate P, Davis B.Mater Sci Eng, 2011; A528: 2610
[20] Nicoletto G, Konečná R, Fintova S.Int J Fatigue, 2012; 41: 39
[21] Li M, Wang L, Almer J D.Acta Mater, 2014; 76: 381
[22] Zhang H, Toda H, Qu P C, Sakaguchi Y, Kobayashi M, Uesugi K, Suzuki Y.Acta Mater, 2009; 57: 3287
[23] Ferrié E, Buffière J Y, Ludwig W, Gravouil A, Edwards L.Acta Mater, 2006; 54: 1111
[24] Ludwig W, Buffiere J, Savelli S, Cloetens P.Acta Mater, 2003; 51: 585
[25] Li T, Shimasaki S, Taniguchi S, Uesugi K, Narita S.ISIJ Int, 2013; 53: 1943
[26] Fang K M, Ni R M.Metall Trans, 1986; 17A: 315
[27] Yang W, Zhang L F, Wang X H, Ren Y, Liu X F, Shan Q L.ISIJ Int, 2013; 53: 1401
[1] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[3] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[4] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[5] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[6] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[7] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
[8] Yutuo ZHANG,Cong LI,Pei WANG,Dianzhong LI. IN SITU SYNCHROTRON X-RAY DIFFRACTION INVESTIGATION ON TENSILE PROPERTIES OF 9Ni STEEL[J]. 金属学报, 2016, 52(4): 403-409.
[9] Cheng BI, Zhipeng GUO, E LIOTTI, Shoumei XIONG, P S GRANT. QUANTIFICATION STUDY ON DENDRITE FRAGMENTATION IN SOLIDIFICATION PROCESS OF ALLUMINUM ALLOYS[J]. 金属学报, 2015, 51(6): 677-684.
[10] YU Cheng, WU Shengchuan, HU Yanan, ZHANG Weihua, FU Yanan. THREE-DIMENSIONAL IMAGING OF GAS PORES IN FUSION WELDED Al ALLOYS BY SYNCHROTRON RADIATION X-RAY MICROTOMOGRAPHY[J]. 金属学报, 2015, 51(2): 159-168.
[11] Tongbang AN,Zhiling TIAN,Jiguo SHAN,Jinshan WEI. EFFECT OF SHIELDING GAS ON MICROSTRUCTURE AND PERFORMANCE OF 1000 MPa GRADE DEPOSITED METALS[J]. 金属学报, 2015, 51(12): 1489-1499.
[12] CHEN Yulai, ZHANG Tairan, WANG Yide, LI Jingyuan. EFFECTS OF O, N AND Ni CONTENTS ON HOT PLASTICITY OF 0Cr25Ni7Mo4N DUPLEX STAINLESS STEEL[J]. 金属学报, 2014, 50(8): 905-912.
[13] LIN Qi-Yong. [J]. 金属学报, 2007, 43(8): 847-850 .
[14] LIN Qi-Yong. Soft Reduction Gradient for Continuous Casting Slab with Different Steel Grade[J]. 金属学报, 2007, 43(12): 1297-1300 .
[15] LIN Qi-Yong. ANALYSIS OF REDUCTION EFFICIENCY IN SOFT REDUCTION FOR CONTINUOUS CASTING SLAB[J]. 金属学报, 2007, 43(12): 1301-1304 .
No Suggested Reading articles found!