Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (8): 943-950    DOI: 10.11900/0412.1961.2014.00622
Current Issue | Archive | Adv Search |
INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT
Jun XIE,Jinjiang YU(),Xiaofeng SUN,Tao JIN,Yanhong YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Jun XIE,Jinjiang YU,Xiaofeng SUN,Tao JIN,Yanhong YANG. INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT. Acta Metall Sin, 2015, 51(8): 943-950.

Download:  HTML  PDF(10840KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based superalloys with high content of W are often used to manufacture gas turbine vanes and high temperature forging dies due to high temperature capability and low cost. The microstructure of Ni-based superalloys consists of g matrix, g′ phase and carbides generally. The deformation mechanisms of alloy mainly include dislocation loops formation, shearing of dislocation into g′ phase and formation of anti-phase boundary (APB) and stacking fault. Although the deformation mechanism of Ni-based superalloys has been studied widely, the relationship between tensile property and deformation mechanism of K416B superalloy at different temperature is still unclear up to now. Therefore, the influence of temperature on tensile behaviors of K416B Ni-based superalloy with high W content was investigated in the present work by means of tensile test at different temperatures. It has been found that the yield and tensile strengths of K416B alloy increase with rising temperature at 20~800 ℃. When the temperature exceeds 800 ℃, the tensile property of the alloy decreases gradually. The deformation feature of the alloy during tensile test at room temperature is that the dislocations shear into g′ phase or cross g′phase by Orowan mechanism. As the dislocations shear into g′ phase, they decompose to form the stacking fault. The dislocation density in the matrix of the alloy increases with the rising temperature and the dislocation tangles in the matrix play the role of strengthening in the alloy during tensile test at 800 ℃. As the temperature further enhancing, the amount of dislocations shearing into g′ phase increases and then the tensile strength of the alloy decreases. Under the condition of middle-low temperature, the brittle fracture occurs in the alloy due to the fact that the cracks are initiated and propagated along M6C carbide with large size. During tensile test at high temperatures, the tensile fracture mode of the alloy is micro-porous aggregation along the g +g′ eutectic interface, which is the main reason for the alloy exhibiting the ductile fracture.

Key words:  KEY WORKS      K416B Ni-based superalloy      tensile behavior      deformation feature      fracture mechanism     
Fund: Supported by National Basic Research Program of China (Nos.2010CB631200 and 2010CB63-1206) and National Natural Science Foundation of China (No.50931004)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00622     OR     https://www.ams.org.cn/EN/Y2015/V51/I8/943

Fig.1  Microstructures of as-cast K416B superalloy

(a) dendrite morphology (b) blocky M6C carbide

(c) MC carbide precipitation along boundaries (d) morphology of g′ phase

Fig.2  XRD spectrum of as-cast K416B superalloy
Fig.3  Tensile properties of K416B superalloy at different temperatures (σb—tensile strength, σ0.2—yield strength, δ—elongation)
Fig.4  Stress-strain curves of K416B superalloy at different temperatures (s—stress, e—strain)
Fig.5  TEM images of K416B alloy after tensile deformation at 20 ℃ (a), 600 ℃ (b) and 800 ℃ (c)
Fig.6  TEM images of K416B alloy after tensile deformation at 900 ℃ (a) and 1000 ℃ (b)
Fig.7  SEM images of K416B alloy after tensile fracture at 20 ℃ (a), 400 ℃ (b), 600 ℃ (c), 800 ℃ (d), 900 ℃ (e) and 1000 ℃ (f)
Fig.8  SEM images of fracture morphologies of K416B alloy after tensile fracture at 20 ℃ (a), 400 ℃ (b), 600 ℃ (c), 800 ℃ (d), 900 ℃ (e) and 1000 ℃ (f)
[1] Liu Y, Hu R, Li J S, Kou H C, Li H W, Chang H, Fu H Z. Mater Sci Eng, 2009; A508: 141
[2] Kim I S, Choi B G, Hong H U, Do J, Jo C Y. Mater Sci Eng, 2014; A593: 55
[3] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 2275
[4] Hou J S, Guo J T, Wu Y X, Zhou L Z, Ye H Q. Mater Sci Eng, 2010; A527: 1548
[5] Yang J X, Sun Y, Jin T, Sun X F, Hu Z Q. Acta Metall Sin, 2014; 50: 839 (杨金侠, 孙 元, 金 涛, 孙晓峰, 胡壮麒. 金属学报, 2014; 50: 839)
[6] Zhang L, Qi F, Zhang W H, Sun W R, Xin X, Hu Z Q. Rare Met Mater Eng, 2012; 41: 1965 (张 磊, 祁 峰, 张伟红, 孙文儒, 信 昕, 胡壮麒. 稀有金属材料与工程, 2012; 41: 1965)
[7] Zheng L, Gu C Q, Zheng Y R. Scr Mater, 2004; 50: 435
[8] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 258
[9] Yao X X, Fang Y, Kim H T, Choi J. Mater Charact, 1997; 38: 97
[10] Liu P P, Zhao M Z, Zhu Y M, Bai J W, Wan F R, Zhan Q. J Alloys Compd, 2013; 579: 599
[11] Hu R, Bai G H, Li J S, Zhang J Q, Zhang T B, Fu H Z. Mater Sci Eng, 2012; A548: 83
[12] Sajjadi S A, Nategh S, Isac M, Zebarjad S M. J Mater Process Technol, 2004; 155-156: 1900
[13] Wang X G, Liu J L, Jin T, Sun X F. Mater Sci Eng, 2014; A598: 154
[14] Yang G X, Xu Y F, Jiang L, Liang S H. Prog Nat Sci: Mater Int, 2011; 21: 418
[15] Bai G H, Li J S, Hu R, Tang Z W, Xue X Y, Fu H Z. Mater Sci Eng, 2011; A528: 1974
[16] Lian Z W, Yu J J, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2008; A489: 227
[17] Zhou P J, Yu J J, Sun X F, Guan H R, Hu Z Q. Trans Nonferrous Met Soc China, 2005; 15: 86
[18] Liu J L, Yu J J, Jin T, Sun X F, Guang H R, Hu Z Q. Trans Nonferrous Met Soc China, 2011; 21: 1518
[19] Kumar A L, Chaitanya N B, Kumar B S, Nath V S, Singh P K. Procedia Mater Sci, 2014; 5: 1090
[20] Wang L, Wang S, Song X, Liu Y, Xu G H. Int J Fatigue, 2014; 62: 210
[21] Bai G H, Li J S, Hu R, Xue X Y, Ma J, Hu S T, Fu H Z. Rare Met Mater Eng, 2011; 40: 1300 (柏广海, 李金山, 胡 锐, 薛祥义, 马 健, 胡胜天, 傅恒志. 稀有金属材料与工程, 2011; 40: 1300)
[22] Kaoumi D, Hrutkay K. J Nucl Mater, 2014; 454: 265
[23] Yang G X, Xu Y F, Jiang L, Liang S H. Prog Nat Sci: Mater Int, 2011; 21: 418
[24] Liu J, Yang H, Sun Z C, Tang W T. Ordnance Mater Sci Eng, 2014; 37(6): 25 (刘 君, 杨 合, 孙志超, 唐文婷. 兵器材料科学与工程, 2014; 37(6): 25)
[25] Unocic R R, Viswanathan G B, Sarosi P M, Karthikeyan S, Li J, Mills M J. Mater Sci Eng, 2008; A483-484: 25
[26] Xie J, Tian S G, Liu J, Zhou X M, Su Y. Acta Metall Sin, 2013; 49: 838 (谢 君, 田素贵, 刘 姣, 周晓明, 苏 勇. 金属学报, 2013; 49: 838)
[1] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[2] Anhua LI, Yueming ZHANG, Haibo FENG, Ning ZOU, Zhongshan Lü, Xujie ZOU, Wei LI. Mechanical Properties of Sintered Ce-Fe-B Magnets[J]. 金属学报, 2017, 53(11): 1478-1486.
[3] Xueda LI,Chengjia SHANG,Changchai HAN,Yuran FAN,Jianbo SUN. INFLUENCE OF NECKLACE-TYPE M-A CONSTITU-ENT ON IMPACT TOUGHNESS AND FRACTUREMECHANISM IN THE HEAT AFFECTED ZONE OF X100 PIPELINE STEEL[J]. 金属学报, 2016, 52(9): 1025-1035.
[4] Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃[J]. 金属学报, 2016, 52(3): 257-263.
[5] Zaoyu SHEN,Limin HE,Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE[J]. 金属学报, 2016, 52(12): 1579-1585.
[6] Xu ZHANG, Yumin WANG, Qing YANG, Jiafeng LEI, Rui YANG. STUDY ON TENSILE BEHAVIOR OF SiCf/TC17 COMPOSITES[J]. 金属学报, 2015, 51(9): 1025-1037.
[7] XIE Jun, YU Jinjiang, SUN Xiaofeng, JIN Tao, SUN Yuan. CARBIDE EVOLUTION BEHAVIOR OF K416B AS-CAST Ni-BASED SUPERALLOY WITH HIGH W CONTENT DURING HIGH TEMPERATURE CREEP[J]. 金属学报, 2015, 51(4): 458-464.
[8] XU Demei, QIN Gaowu, LI Feng, WANG Zhanhong, ZHONG Jingming, LI Zhinian, HE Lijun. TENSILE DEFORMATION AND FRACTURE BEHAVIOR OF POLYCRYSTALLINE BERYLLIUM AT ROOM TEMPERATURE[J]. 金属学报, 2014, 50(9): 1078-1086.
[9] JIE Jinchuan, ZOU Chunming, WANG Hongwei, WEI Zunjie. MECHANICAL BEHAVIOR OF Al-20Mg ALLOY SOLIDIFIED UNDER HIGH PRESSURE[J]. 金属学报, 2014, 50(8): 971-978.
[10] ZHENG Kai, WANG Yanli, LI Shilei, LU Xuming, WANG Xitao, XUE Fei. THE MICROSTRUCTURE AND TENSILE FRACTURE BEHAVIOR OF LONG TERM THERMAL AGED Z3CN20-09M STAINLESS STEEL[J]. 金属学报, 2013, 49(2): 175-180.
[11] . [J]. 金属学报, 2007, 43(10): 1025-1030 .
[12] CHEN Rongshi;GUO Jianting;YIN Weimin;ZHOU Jiyang (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Department of Materials Engineering; Dalian University of Technology;Dalian 116023). INVESTIGATION ON MICROSTRUCTURE AND SUPERPLASTICITY OF A NiAL-BASED MULTIPHASE ALLOY[J]. 金属学报, 1998, 34(11): 1121-1125.
[13] ZHANG Ji;ZHANG Zhihong;ZOU Dunxu;ZHONG Zengyong(Central Iron and Steel Research Institute;Ministry of Metallurgical Industry;Beijing 100081)(Manuscript received 1995-12-25)(Department 5;Central Iron and Steel Research Institute;MMI;BeiJing 100081). FRACTURE MECHANISMS OF FFL MICROSTRUCTURE IN TiAl ALLOY[J]. 金属学报, 1996, 32(10): 1044-1048.
[14] WANG Zidong; HU Hanqi (University of Science and Technology Beijing; Beijing 100083); LI Chunyu; LIU Baicao (Beijing Institute of Aeronautical Materials ; 100095)(Manuscript received 94-07-25). CONCEPT AND FABRICATION OF METAL MATRIX INTRAGRANULAR COMPOSITES[J]. 金属学报, 1995, 31(13): 40-43.
[15] XING Zhiqiang; CHENG Yongmei(Beijing Polytechnic University;100022);CHU Wuyang(University of Science and Technology Beijing; 100083)(Manuscript received 94-03-10;in revised form 94-07-19). LOW-FREQUENCY FATIGUE OF TWO Ti_3Al INTERMETALLICS IN DISTILLED WATER[J]. 金属学报, 1995, 31(1): 34-39.
No Suggested Reading articles found!