Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1078-1086    DOI: 10.11900/0412.1961.2014.00062
Current Issue | Archive | Adv Search |
TENSILE DEFORMATION AND FRACTURE BEHAVIOR OF POLYCRYSTALLINE BERYLLIUM AT ROOM TEMPERATURE
XU Demei1,2, QIN Gaowu1(), LI Feng2, WANG Zhanhong2, ZHONG Jingming2, LI Zhinian2, HE Lijun3
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819
2 Key Laboratory of Ningxia for Rare Materials, Northwest Rare Metal Materials Research Institute, Shizuishan 753000
3 Key Laboratory of Ningxia for Photovoltaic Materials, Ningxia University, Yinchuan 750021
Cite this article: 

XU Demei, QIN Gaowu, LI Feng, WANG Zhanhong, ZHONG Jingming, LI Zhinian, HE Lijun. TENSILE DEFORMATION AND FRACTURE BEHAVIOR OF POLYCRYSTALLINE BERYLLIUM AT ROOM TEMPERATURE. Acta Metall Sin, 2014, 50(9): 1078-1086.

Download:  HTML  PDF(9044KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Deformation and fracture behaviors as well as their mechanisms of polycrystalline beryllium at room temperature were systematically studied by in situ tensile test in SEM, characterizing fracture cleavage planes by electron backscattered diffraction (EBSD) technique, and twinning deformation analyzing by OM. The results show that slip and twinning deformation of polycrystalline beryllium are difficult to occur under tensile stress at room temperature. Slip bands happen only in some grains with a favorable orientation, and finally twinning deformation grain number accounts for only about 5% of the total grains. There exists the cross slip between (0001) basal plane and {1010} prismatic plane in the deformation process. Microcracks usually initiate at one grain boundary, then propagate by a transgranular way and terminate at the other side of the grain boundary in polycrystalline beryllium. Crack initiation of polycrystalline beryllium is in accordance with Stroh dislocation pile-up crack theory. The growth of microcracks have to depend on different microcracks merging by cleavage steps or tearing way due to a strong blocking effect of grain boundaries on the microcracks propagation. Basal cleavage planes of polycrystalline beryllium are determined to be (0001) and {1010} planes. Both of them are the main paths of cleavage crack initiation and propagation of polycrystalline beryllium. It is not observed that twinning deformation induces nucleation of microcracks.

Key words:  polycrystalline Be      fracture mechanism      cleavage plane      twinning deformation     
ZTFLH:  TG146.2  
  TB383  
Fund: Supported by Auxiliary Program for Military Products (No.JPPT-125-GH-036)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00062     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1078

Fig.1  Schematic diagram of SEM in situ tensile sample with thickness 1.76 mm
Fig.2  Deformation characteristics of polycrystalline Be at fracture load 667.9 MPa
Fig.3  Microstructures of polycrystalline Be before and after deformation
Fig.4  Microcracks nucleating, growing and stopping in polycrystalline Be
Fig.5  Several parallel microcracks merging within one grain of polycrystalline Be
Fig.6  Grain boundary pinning effect to cracks propagation in polycrystalline Be
Fig.7  Stable growing of microcracks with increasing stress in polycrystalline Be at loads of 617.6 MPa (a), 636.4 MPa (b), 641.5 MPa (c), 657.7 MPa (d), 663.6 MPa (e) and 667.9 MPa (f)
Fig.8  Cleavage facet indexed in cracks initiation and its adjacent propagation areas of polycrystalline Be fracture
[1] Goldberg A. Atomic, Crystal, Elastic, Thermal, Nuclear and Other Properties of Beryllium. Livermore: Lawrence Livermore National Laboratory, 2006: 3
[2] Goldberg A, Olson D L, Jacobson L A. In: Walsh K A ed., Beryllium Chemistry and Processing. Materials Park, OH: The Materials Information Society/ASM International, 2009: 151
[3] Marder J M. In: ASM International ed., Metals Handbook: Powder Metallurgy. Vol.7, 9th Ed., Materials Park, OH: American Society for Metals, 1984: 755
[4] Webster D. In: The Metals Society ed., Berylllium 1977—Fourth International Conference on Beryllium, London: The Royal Society, 1977: 1/1
[5] Fritz A. In: Webster D, London G J eds., Beryllium Science and Technology. Vol.1, New York and London: Plenum Press, 1979: 7
[6] Saxton H J,London G J. In: Webster D, London G J eds., Beryllium Science and Technology. Vol.1, New York and London: Plenum Press, 1979: 115
[7] Lemon D D, Brown W F. J Test Eval, 1985; 13: 152
[8] Burns S J, Gurland J, Richman M H. Metallography, 1971; 4: 533
[9] Cooper R E. J Test Eval, 1975; 3: 87
[10] Cooper R E. Int J Fract, 1975; 11: 649
[11] Conrad H, Hurd J, Woodard D. J Test Eval, 1973; 1: 88
[12] Jones M H, Bubsey R T, Brown W F. J Test Eval, 1973; 1: 100
[13] Shabbits W O, Logsdon W A. J Test Eval, 1973; 1: 110
[14] Kornienko L A, Papirov I I. Met Sci Heat Treat, 1970; 12: 885
[15] Perra M W, Finnie I. J Mater Sci, 1977; 12: 1519
[16] Bat'kov Yu V, Golubev V K, Sobolev Yu S, Trunin I R, Fishman N D. J Appl Mech Tech Phys, 1996; 37: 484
[17] Chaouadi R, Moons F, Puzzolante J L.Tensile and Fracture Toughness Test Results of Neutron Irradiated Beryllium. Tokyo: Japan Atomic Energy Research Institute, 1998: 1
[18] Moons F, Chaouadi R, Puzzolante J L. Fusion Eng Des, 1998; 41: 187
[19] Taylor G I. J Inst Met, 1938; 62: 307.
[20] von Mises R, Angew Z. Math Mech, 1928; 8: 161.
[21] Tuer G L, Kaufmann A R. In: White D W, Burke J E eds., The Metal Beryllium. Cleveland: American Society for Metals, 1955: 372
[22] Greetham G, Martin A J. In: Institute of Metals ed., The Metallurgy of Beryllium. London: Chapman & Hall Ltd, 1963: 47
[23] Martin A J, Ellis G C. In: Institute of Metals ed., The Metallurgy of Beryllium. London: Chapman & Hall Ltd, 1963: 3
[24] Bennett W D. In: Institute of Metals ed., The Metallurgy of Beryllium. London: Chapman & Hall. Ltd, 1963: 33
[25] Greenspan J. In: Hausner H H ed., Beryllium: its Metallurgy and Properties. Berkeley and Los Angeles: University of California Press, 1965: 240
[26] Gindin I A, Grinyuk V N, Ivanov V Y, Lazareva M B, Papirov I I, Starodubov Y D, Tikhinskiy G F, Finkel V A. Phys Met Metall, 1968; 26: 152
[27] Yoo M H. Metall Trans, 1981; 12A: 409
[28] Liang N G, Liu H Q, Wang Z Q. Sci China, 1995; 25A: 859
(梁乃刚, 刘洪秋, 王自强. 中国科学, 1995; 25A: 859)
[29] Xu B A,Li X Z. Mechanics of Materials. Shanghai: Shanghai Jiao Tong University Press, 1988: 28
(许本安,李秀治. 材料力学. 上海: 上海交通大学出版社, 1988: 28)
[30] Shi D K. Fundamentals of Materials Science. 2nd Ed., Beijing: China Machine Press, 2003: 334
(石德珂.材料科学基础. 第二版, 北京: 机械工业出版社, 2003: 334)
[31] Ha K F. Microscopic Theory of the Metals Mechanical Properties. Beijing: Science Press,1983: 305, 610-615
(哈宽富.金属力学性质的微观理论. 北京: 科学出版社, 1983: 305, 610-615)
[32] Stroh A N. Proc Math Phys Sci, 1954; 223: 404
[33] Stroh A N. Proc Math Phys Sci, 1955; 232: 548
[34] Stroh A N. Philos Mag, 1958; 3: 625
[35] Xu D M, Li F, Wang D X, Ren Y P, Pei W L, Qin G W. China J Rare Met, 2010; 34: 844
(许德美, 李 峰, 王东新, 任玉平, 裴文利, 秦高梧. 稀有金属, 2010; 34: 844)
[36] Stonehouse A J. J Vac Sci Technol, 1986; 4A: 1163
[37] Matysina Z A. Mater Chem Phys, 1999; 60: 70
[38] Gilman J J. Trans Am Inst Min Metall Eng, 1956; 206: 1326
[39] Wang L,Lv J Y,Guan F A. Metal Mechanical Property. 5th Ed., Shenyang: Northeastern University Press, 1993: 145
(王 磊,吕俊英,关福安. 金属力学性质. 第五版. 沈阳: 东北大学出版社, 1993: 145)
[40] Li J. Fundamentals of Materials Science. Beijing: Metallurgical Industry Press, 2006: 216
(李见.材料科学基础. 北京: 冶金工业出版社, 2006: 216)
[1] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[2] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[3] Zukun YANG, Changsheng ZHANG, Beibei PANG, Yanyan HONG, Fangjie MO, Zhao LIU, Guang'ai SUN. Effect of Initial Microstructures on the Macroscopic Mechanical Properties of Polycrystalline Beryllium[J]. 金属学报, 2018, 54(8): 1150-1156.
[4] Anhua LI, Yueming ZHANG, Haibo FENG, Ning ZOU, Zhongshan Lü, Xujie ZOU, Wei LI. Mechanical Properties of Sintered Ce-Fe-B Magnets[J]. 金属学报, 2017, 53(11): 1478-1486.
[5] Xueda LI,Chengjia SHANG,Changchai HAN,Yuran FAN,Jianbo SUN. INFLUENCE OF NECKLACE-TYPE M-A CONSTITU-ENT ON IMPACT TOUGHNESS AND FRACTUREMECHANISM IN THE HEAT AFFECTED ZONE OF X100 PIPELINE STEEL[J]. 金属学报, 2016, 52(9): 1025-1035.
[6] Zaoyu SHEN,Limin HE,Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE[J]. 金属学报, 2016, 52(12): 1579-1585.
[7] Xu ZHANG, Yumin WANG, Qing YANG, Jiafeng LEI, Rui YANG. STUDY ON TENSILE BEHAVIOR OF SiCf/TC17 COMPOSITES[J]. 金属学报, 2015, 51(9): 1025-1037.
[8] Jun XIE,Jinjiang YU,Xiaofeng SUN,Tao JIN,Yanhong YANG. INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT[J]. 金属学报, 2015, 51(8): 943-950.
[9] JIE Jinchuan, ZOU Chunming, WANG Hongwei, WEI Zunjie. MECHANICAL BEHAVIOR OF Al-20Mg ALLOY SOLIDIFIED UNDER HIGH PRESSURE[J]. 金属学报, 2014, 50(8): 971-978.
[10] . [J]. 金属学报, 2007, 43(10): 1025-1030 .
[11] CHEN Rongshi;GUO Jianting;YIN Weimin;ZHOU Jiyang (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Department of Materials Engineering; Dalian University of Technology;Dalian 116023). INVESTIGATION ON MICROSTRUCTURE AND SUPERPLASTICITY OF A NiAL-BASED MULTIPHASE ALLOY[J]. 金属学报, 1998, 34(11): 1121-1125.
[12] ZHANG Ji;ZHANG Zhihong;ZOU Dunxu;ZHONG Zengyong(Central Iron and Steel Research Institute;Ministry of Metallurgical Industry;Beijing 100081)(Manuscript received 1995-12-25)(Department 5;Central Iron and Steel Research Institute;MMI;BeiJing 100081). FRACTURE MECHANISMS OF FFL MICROSTRUCTURE IN TiAl ALLOY[J]. 金属学报, 1996, 32(10): 1044-1048.
[13] WANG Zidong; HU Hanqi (University of Science and Technology Beijing; Beijing 100083); LI Chunyu; LIU Baicao (Beijing Institute of Aeronautical Materials ; 100095)(Manuscript received 94-07-25). CONCEPT AND FABRICATION OF METAL MATRIX INTRAGRANULAR COMPOSITES[J]. 金属学报, 1995, 31(13): 40-43.
[14] XING Zhiqiang; CHENG Yongmei(Beijing Polytechnic University;100022);CHU Wuyang(University of Science and Technology Beijing; 100083)(Manuscript received 94-03-10;in revised form 94-07-19). LOW-FREQUENCY FATIGUE OF TWO Ti_3Al INTERMETALLICS IN DISTILLED WATER[J]. 金属学报, 1995, 31(1): 34-39.
[15] YANG Yang;ZHANG Xinming(Central-South University of Technology; Changsha); LI Zhenghua; LI Qingyun(North-West Institute for Nonferrous Metal Research; Baoji)(Manuscript received 13 December;1993). IN SITU SEM OBSERVATION ON MICROFRACTURE OF TA2/A3 EXPLOSION CLADDING INTERFACE[J]. 金属学报, 1994, 30(9): 409-415.
No Suggested Reading articles found!