|
|
TENSILE DEFORMATION AND FRACTURE BEHAVIOR OF POLYCRYSTALLINE BERYLLIUM AT ROOM TEMPERATURE |
XU Demei1,2, QIN Gaowu1( ), LI Feng2, WANG Zhanhong2, ZHONG Jingming2, LI Zhinian2, HE Lijun3 |
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 2 Key Laboratory of Ningxia for Rare Materials, Northwest Rare Metal Materials Research Institute, Shizuishan 753000 3 Key Laboratory of Ningxia for Photovoltaic Materials, Ningxia University, Yinchuan 750021 |
|
Cite this article:
XU Demei, QIN Gaowu, LI Feng, WANG Zhanhong, ZHONG Jingming, LI Zhinian, HE Lijun. TENSILE DEFORMATION AND FRACTURE BEHAVIOR OF POLYCRYSTALLINE BERYLLIUM AT ROOM TEMPERATURE. Acta Metall Sin, 2014, 50(9): 1078-1086.
|
Abstract Deformation and fracture behaviors as well as their mechanisms of polycrystalline beryllium at room temperature were systematically studied by in situ tensile test in SEM, characterizing fracture cleavage planes by electron backscattered diffraction (EBSD) technique, and twinning deformation analyzing by OM. The results show that slip and twinning deformation of polycrystalline beryllium are difficult to occur under tensile stress at room temperature. Slip bands happen only in some grains with a favorable orientation, and finally twinning deformation grain number accounts for only about 5% of the total grains. There exists the cross slip between (0001) basal plane and {1010} prismatic plane in the deformation process. Microcracks usually initiate at one grain boundary, then propagate by a transgranular way and terminate at the other side of the grain boundary in polycrystalline beryllium. Crack initiation of polycrystalline beryllium is in accordance with Stroh dislocation pile-up crack theory. The growth of microcracks have to depend on different microcracks merging by cleavage steps or tearing way due to a strong blocking effect of grain boundaries on the microcracks propagation. Basal cleavage planes of polycrystalline beryllium are determined to be (0001) and {1010} planes. Both of them are the main paths of cleavage crack initiation and propagation of polycrystalline beryllium. It is not observed that twinning deformation induces nucleation of microcracks.
|
|
|
Fund: Supported by Auxiliary Program for Military Products (No.JPPT-125-GH-036) |
[1] |
Goldberg A. Atomic, Crystal, Elastic, Thermal, Nuclear and Other Properties of Beryllium. Livermore: Lawrence Livermore National Laboratory, 2006: 3
|
[2] |
Goldberg A, Olson D L, Jacobson L A. In: Walsh K A ed., Beryllium Chemistry and Processing. Materials Park, OH: The Materials Information Society/ASM International, 2009: 151
|
[3] |
Marder J M. In: ASM International ed., Metals Handbook: Powder Metallurgy. Vol.7, 9th Ed., Materials Park, OH: American Society for Metals, 1984: 755
|
[4] |
Webster D. In: The Metals Society ed., Berylllium 1977—Fourth International Conference on Beryllium, London: The Royal Society, 1977: 1/1
|
[5] |
Fritz A. In: Webster D, London G J eds., Beryllium Science and Technology. Vol.1, New York and London: Plenum Press, 1979: 7
|
[6] |
Saxton H J,London G J. In: Webster D, London G J eds., Beryllium Science and Technology. Vol.1, New York and London: Plenum Press, 1979: 115
|
[7] |
Lemon D D, Brown W F. J Test Eval, 1985; 13: 152
|
[8] |
Burns S J, Gurland J, Richman M H. Metallography, 1971; 4: 533
|
[9] |
Cooper R E. J Test Eval, 1975; 3: 87
|
[10] |
Cooper R E. Int J Fract, 1975; 11: 649
|
[11] |
Conrad H, Hurd J, Woodard D. J Test Eval, 1973; 1: 88
|
[12] |
Jones M H, Bubsey R T, Brown W F. J Test Eval, 1973; 1: 100
|
[13] |
Shabbits W O, Logsdon W A. J Test Eval, 1973; 1: 110
|
[14] |
Kornienko L A, Papirov I I. Met Sci Heat Treat, 1970; 12: 885
|
[15] |
Perra M W, Finnie I. J Mater Sci, 1977; 12: 1519
|
[16] |
Bat'kov Yu V, Golubev V K, Sobolev Yu S, Trunin I R, Fishman N D. J Appl Mech Tech Phys, 1996; 37: 484
|
[17] |
Chaouadi R, Moons F, Puzzolante J L.Tensile and Fracture Toughness Test Results of Neutron Irradiated Beryllium. Tokyo: Japan Atomic Energy Research Institute, 1998: 1
|
[18] |
Moons F, Chaouadi R, Puzzolante J L. Fusion Eng Des, 1998; 41: 187
|
[19] |
Taylor G I. J Inst Met, 1938; 62: 307.
|
[20] |
von Mises R, Angew Z. Math Mech, 1928; 8: 161.
|
[21] |
Tuer G L, Kaufmann A R. In: White D W, Burke J E eds., The Metal Beryllium. Cleveland: American Society for Metals, 1955: 372
|
[22] |
Greetham G, Martin A J. In: Institute of Metals ed., The Metallurgy of Beryllium. London: Chapman & Hall Ltd, 1963: 47
|
[23] |
Martin A J, Ellis G C. In: Institute of Metals ed., The Metallurgy of Beryllium. London: Chapman & Hall Ltd, 1963: 3
|
[24] |
Bennett W D. In: Institute of Metals ed., The Metallurgy of Beryllium. London: Chapman & Hall. Ltd, 1963: 33
|
[25] |
Greenspan J. In: Hausner H H ed., Beryllium: its Metallurgy and Properties. Berkeley and Los Angeles: University of California Press, 1965: 240
|
[26] |
Gindin I A, Grinyuk V N, Ivanov V Y, Lazareva M B, Papirov I I, Starodubov Y D, Tikhinskiy G F, Finkel V A. Phys Met Metall, 1968; 26: 152
|
[27] |
Yoo M H. Metall Trans, 1981; 12A: 409
|
[28] |
Liang N G, Liu H Q, Wang Z Q. Sci China, 1995; 25A: 859
|
|
(梁乃刚, 刘洪秋, 王自强. 中国科学, 1995; 25A: 859)
|
[29] |
Xu B A,Li X Z. Mechanics of Materials. Shanghai: Shanghai Jiao Tong University Press, 1988: 28
|
|
(许本安,李秀治. 材料力学. 上海: 上海交通大学出版社, 1988: 28)
|
[30] |
Shi D K. Fundamentals of Materials Science. 2nd Ed., Beijing: China Machine Press, 2003: 334
|
|
(石德珂.材料科学基础. 第二版, 北京: 机械工业出版社, 2003: 334)
|
[31] |
Ha K F. Microscopic Theory of the Metals Mechanical Properties. Beijing: Science Press,1983: 305, 610-615
|
|
(哈宽富.金属力学性质的微观理论. 北京: 科学出版社, 1983: 305, 610-615)
|
[32] |
Stroh A N. Proc Math Phys Sci, 1954; 223: 404
|
[33] |
Stroh A N. Proc Math Phys Sci, 1955; 232: 548
|
[34] |
Stroh A N. Philos Mag, 1958; 3: 625
|
[35] |
Xu D M, Li F, Wang D X, Ren Y P, Pei W L, Qin G W. China J Rare Met, 2010; 34: 844
|
|
(许德美, 李 峰, 王东新, 任玉平, 裴文利, 秦高梧. 稀有金属, 2010; 34: 844)
|
[36] |
Stonehouse A J. J Vac Sci Technol, 1986; 4A: 1163
|
[37] |
Matysina Z A. Mater Chem Phys, 1999; 60: 70
|
[38] |
Gilman J J. Trans Am Inst Min Metall Eng, 1956; 206: 1326
|
[39] |
Wang L,Lv J Y,Guan F A. Metal Mechanical Property. 5th Ed., Shenyang: Northeastern University Press, 1993: 145
|
|
(王 磊,吕俊英,关福安. 金属力学性质. 第五版. 沈阳: 东北大学出版社, 1993: 145)
|
[40] |
Li J. Fundamentals of Materials Science. Beijing: Metallurgical Industry Press, 2006: 216
|
|
(李见.材料科学基础. 北京: 冶金工业出版社, 2006: 216)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|