Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (4): 465-472    DOI: 10.11900/0412.1961.2014.00485
Current Issue | Archive | Adv Search |
EFFECT OF MINOR Sn AND Nb ADDITIONS ON THE THERMAL STABILITY AND COMPRESSIVE PLASTICITY OF Zr-Cu-Fe-Al BULK METALLIC GLASS
YANG Bin1,2(), LI Xin1, LUO Wendong1, LI Yuxiang1
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2 Collaborative Innovation Center of Universal Iron & Steel Technology, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

YANG Bin, LI Xin, LUO Wendong, LI Yuxiang. EFFECT OF MINOR Sn AND Nb ADDITIONS ON THE THERMAL STABILITY AND COMPRESSIVE PLASTICITY OF Zr-Cu-Fe-Al BULK METALLIC GLASS. Acta Metall Sin, 2015, 51(4): 465-472.

Download:  HTML  PDF(4851KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

New Ni-free Zr61.5Cu21.5-xFe5Al11Sn1Nbx (x=0,1, 2, atomic fraction, %) and Zr61.5Cu21.5Fe5Al12 bulk metallic glasses (BMGs) rods with diameters of 2 and 3 mm were fabricated by copper mold casting. In order to improve the plasticity of the Zr61.5Cu21.5Fe5Al12 BMG, minor Sn and Nb with lower thermal neutron cross-sections was added into the Zr-Cu-Fe-Al alloy. The experimental results showed that the glass-forming abilities of the BMGs with Sn and Nb elements were reduced slightly. Among them with Sn and Nb elements, however, Zr61.5Cu19.5Fe5Al11Sn1Nb2 BMG exhibits high compressive strength, high ductility together with extensive “work hardening”. HRTEM study verifies the glassy states of both Zr61.5Cu19.5Fe5Al11Sn1Nb2 and Zr61.5Cu21.5Fe5Al12 alloys samples. The difference between the microstructures of the BMGs samples with and without Sn and Nb elements is that the atomic arrangement in Zr61.5Cu19.5Fe5Al11Sn1Nb2 BMG is more closely than that in Zr61.5Cu21.5Fe5Al12 BMG. Positron annihilation lifetime spectroscopy study showed further that the Zr61.5Cu19.5Fe5Al11Sn1Nb2 BMG has more closely atomic arrangement than the Zr61.5Cu21.5Fe5Al12 BMG. The structural free-volume size of the former BMG is smaller than that of the latter BMG. And the total free-volume amount of the former BMG is obviously higher than that of the latter BMG. Uniformly distributed free volume is beneficial to improve the shear band formation, branching, and interactions of the Zr61.5Cu19.5Fe5Al11Sn1Nb2 BMG, which increases finally the compressive ductility of the BMG.

Key words:  minor Sn and Nb additions      Zr-Cu-Fe-Al bulk metallic glass      thermal stability      plasticity     
ZTFLH:  TG113.2  
Fund: Supported by Beijing Municipal Natural Science Foundation (No.2122039) and Program for ChangJiang Scholars and Innovative Research Team in University and State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00485     OR     https://www.ams.org.cn/EN/Y2015/V51/I4/465

Fig.1  XRD spectra of the Zr61.5Cu21.5Fe5Al12 (Z1) (a), Zr61.5Cu21.5Fe5Al11Sn1 (b), Zr61.5Cu20.5Fe5Al11Sn1Nb1 (c) and Zr61.5Cu19.5Fe5Al11Sn1Nb2 (Z2) (d) bulk metallic glasses (BMGs)
Fig.2  DSC curves of the Z2 and Z1 BMGs at heating rate of 20 K/min (Tg—the glass transition temperature, Tx1—the first onset crystallization temperature, Tx2—the second onset crystallization temperature)
Alloy Tg
K
Tx1
K
Tx2
K
DTx
K
Tl
K
Tg /Tl Tm
K
g sa
b
Z2 662 744 800 82 1173 0.564 1138 0.405 0.980
Z1 664 756 92 1173 0.566 1139 0.412 1.026
Table 1  Thermodynamic parameters and thermal neutron cross-sections of the Z2 and Z1 BMGs at heating rate of 20 K/min
Fig.3  DSC curves of the Z2 BMG at different heating rates
Alloy Eg Ex1 Ep1 Ep2
Z2 253.8 269.4 281.0 201.2
Z1 255.2 274.9 285.7 -
Table 2  Apparent activation energies of the Z2 and Z1[10] BMGs
Fig.4  Kissinger plots of Tg, first crystallization peak temperature Tp1, second crystallization peak temperature Tp2 and crystallization temperature Tx for the Z2 BMG
Fig.5  Compressive stress-strain curves for the Z2 and Z1 BMGs with a diameter of 2 mm and at strain rate of 4×10-4 s-1
Alloy E / GPa sy / MPa ey / % smax / MPa ef / %
Z2 85 1851 2.42 >2532 >30
Z1 91 1885 2.25 1930 2.39
Table 3  Compressive mechanical properties of Z2 and Z1 BMGs
Fig.6  HRTEM images (a, c) and IFT patterns (b, d) of the Z2 (a, b) and Z1 (c, d) BMGs obtained by the black square areas (Insets show corresponding SAED patterns)
Fig.7  SEM images of the fracture surfaces for the Z2 and Z1 BMGs
Fig.8  DSC traces for the Z2 and Z1 BMGs (Inset is the magnified DSC traces near the glass transition temperatures for the BMGs at heating rate of 10 K/min)
Alloy t1 / ps I1 / % t2 / ps I2 / % t3 / ps I3 / % Fit factor
Z2 110.7 25.5 184.4 73.4 1984.0 1.07 1.0054
Z1 141.0 42.9 201.0 56.0 2018.0 1.15 0.9927
Table 4  Three components fit results of the Z2 and Z1 BMGs using positron annihilation lifetime spectroscopy
Alloy tm / ps Im / % tv / ps Iv / % Fit factor
Z2 168.3 98.77 1686.0 1.23 1.0907
Z1 176.4 98.68 1736.0 1.31 1.0475
Table 5  Two components fit results of the Z1 and Z2 BMGs using positron annihilation lifetime spectroscop
[1] Zhang Q S, Zhang W, Inoue A. Scr Mater, 2009; 61: 241
[2] Inoue A, Zhang Q S, Zhang W, Yubuta K, Son K S, Wang X M. Mater Trans, 2009; 50: 388
[3] Wang W H. Prog Mater Sci, 2012; 57: 487
[4] Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcik J, Franz H, Liu Y G, Can Q P, Jiang J Z. Acta Mater, 2008; 56: 1785
[5] Zhang Q S, Zhang W, Inoue A. Mater Trans, 2008; 49: 2743
[6] Johnson W L. MRS Bull, 1999; 24: 42
[7] Liu J Z. Nuclear Structural Materials. Beijing: Chemical Industry Press, 2007: 162
(刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 162)
[8] Chen H M,Ma C L,Bai X D. Corrosion and Protection of Nuclear Reactor Materials. Beijing: Atomic Energy Press, 1984: 222
(陈鹤鸣,马春来,白新德. 核反应堆材料腐蚀及其防护. 北京: 原子能出版社, 1984: 222)
[9] Luo W D, Yang B, Chen G L. Scr Mater, 2011; 64: 625
[10] Luo W D. Master Thesis, University of Science and Technology Beijing, 2010
(罗文东. 北京科技大学硕士学位论文, 2010)
[11] Wu X F, Zhang H F, Qiu K Q, Yang H C, Hu Z Q. Acta Metall Sin, 2003; 39: 555
(武晓峰, 张海峰, 邱克强, 杨洪才, 胡壮麒, 金属学报, 2003; 39: 555)
[12] Liu Y H, Wang G, Pan M X, Wang W H. Science, 2007; 315: 1385
[13] Wang W H. Prog Sci, 2013; 33: 177
(汪卫华. 物理学进展, 2013; 33: 177)
[14] Kondo R, Nomura S N, Tsutsumi Doi Y H, Hanawa T. Acta Biomater, 2011; 7: 4278
[15] Zhou F Y, Wang B L, Qiu K J, Lin W J, Li L, Wang Y B, Nie F L, Zheng Y F. Mater Sci Eng, 2012; C32: 851
[16] Wei J, Frankel P, Polatidis Blat E M, Ambard A, Comstock R J, Hallstadius L, Hudson D, Smith G D W, Grovenor C R M, Klaus M, Cottis R A, Lyon Preuss S M. Acta Mater, 2013; 61: 4200
[17] Inoue A. Proc Jpn Acad, 1997; 73B: 19
[18] Inoue A. Bulk Amorphous Alloys: Preparation and Fundamental Characteristics. Uetikon-Zurich: Trans Tech Publications, 1998: 3
[19] Suryanarayana C,Inoue A. Bulk Metallic Glass. New York: CRC Press, 2011: 67
[20] Chen H, He Y, Shiftlet G J, Poon S J. Nature, 1994; 367: 541
[21] Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J. Phys Rev Lett, 2005; 94: 205501
[22] Chen L Y, Fu Z D, Zhang G Q, Hao X P, Jiang Q, Wang X D, Cao Q P, Franz H, Liu Y G, Xie H S, Zhang S L, Wang B Y, Zeng Y W, Jiang J Z. Phys Rev Lett, 2008; 100: 075501
[23] Hui X, Liu S N, Pang S J, Zhuo L C, Zhang T, Chen G L, Liu Z K. Scr Mater, 2010; 63: 239
[24] Van den Beukel A, Sietsma J. Acta Metall Mater, 1990; 38: 383
[25] Slipenyuk A, Eckert J. Scr Mater, 2004; 50: 39
[26] Daniel B S S, Reger-Leonhard A, Heilmaier M, Eckert J, Schultz L. Mech Time-Depend Mater, 2002; 6: 193
[27] Flores K M, Sherer E, Bharathula A, Chen H, Jean Y C. Acta Mater, 2007; 55: 3403
[28] Li Y X. Master Thesis, University of Science and Technology Beijing, 2011
(李宇翔. 北京科技大学硕士学位论文, 2011)
[1] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[3] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[4] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[5] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[6] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[7] ZHANG Xinfang, XIANG Siqi, YI Kun, GUO Jingdong. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current[J]. 金属学报, 2022, 58(5): 581-598.
[8] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[9] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[10] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[11] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[12] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[13] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[14] PENG Yanyan, YU Liming, LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun. Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. 金属学报, 2020, 56(8): 1075-1083.
[15] DENG Yahui, YANG Yinhui, PU Chaobo, NI Ke, PAN Xiaoyu. Effect of Mn Addition on High Temperature Tensile Behavior of 23%Cr Low Nickel Type Duplex Stainless Steel[J]. 金属学报, 2020, 56(7): 949-959.
No Suggested Reading articles found!