Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (3): 311-316    DOI: 10.3724/SP.J.1037.2010.00645
论文 Current Issue | Archive | Adv Search |
HARDENING BEHAVIOR OF THE AS–CAST Al–Mg–Sc–Zr ALLOY
DU Gang, YANG Wen, YAN Desheng, RONG Lijian
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

DU Gang YANG Wen YAN Desheng RONG Lijian. HARDENING BEHAVIOR OF THE AS–CAST Al–Mg–Sc–Zr ALLOY. Acta Metall Sin, 2011, 47(3): 311-316.

Download:  PDF(2040KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Addition of minor Sc and Zr to the Al–Mg alloys can effectively improve the recrystallization temperature and strength of the alloys due to the formation of L12 structured Al3(Sc, Zr) precipitates. To optimize the mechanical properties of the Al–Mg–Sc–Zr alloys, it is important to understand the precipitation behavior of the Al3(Sc, Zr) precipitates and the corresponding strengthening effect during the annealing of Al–Mg–Sc–Zr alloys. In this work, isothermal annealing at the temperatures between 250 and 450 ℃ was conducted to study the precipitation behavior of Al3(Sc, Zr) particles in the as–cast Al–6Mg–0.2Sc–0.15Zr alloy (mass fraction, %). The results show that dramatic precipitation hardening occurred with the formation of the coherent Al3(Sc, Zr) precipitates during the annealing. Precipitation rocess of the Al3(Sc, Zr) accelerates with the increase of the annealing temperature. After the sample was annealed at 300 ℃ for 24 h, the Al3(Sc, Zr) particles were in a size of 5 nm ad the yield strength of the as–cast alloy can be increased by 90 MPa. Severe coarsening of Al3(Sc, Zr) occurred when the annealing temperature is bove 400 ℃. After annealed at 450 ℃ for 24 h, average particle size of Al3(Sc, Zr) particles was found increase to 30 nm, wth the corresponding precipitation strengthening effect to be about 30 MPa.
Key words:  Al-Mg-Sc-Zr alloy      annealing      precipitation strengthening      microstructure     
Received:  01 December 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00645     OR     https://www.ams.org.cn/EN/Y2011/V47/I3/311

[1] Filatov Y A, Yelagin V I, Zakharov V V. Mater Sci Eng, 2000; A280: 97

[2] Zhao W T, Yan D S, Rong L J. Acta Metall Sin, 2005; 41: 1150

(赵卫涛, 闫德胜, 戎利建. 金属学报, 2005; 41: 1150)

[3] Dougherty L M, Robertson I M, Vetrano J S. Acta  Mater, 2003; 51: 4367

[4] Seidman D N, Marquis E A, Dunand D C. Acta Mater, 2002; 50: 4021

[5] Davydov V G, Rostova T D, Zakharov V V, Filatov Y A, Yelagin V I. Mater Sci Eng, 2000; A280: 30

[6] Du G, Deng J W, Yan D S, Zhao M J, Rong L J. J Mater Sci Technol, 2009; 25: 749

[7] Nie B, Yin Z M, Zhu D P, Jiang F, He Z B. Chin J Rare Met, 2006; 30: 213

(聂波, 尹志民, 朱大鹏, 姜峰, 何振波. 稀有金属, 2006; 30: 213)

[8] Norman A F, Prangnell P B, Mcewen R S. Acta Mater, 1998; 46: 5715

[9] Iwamura S, Miura Y. Acta Mater, 2004; 52: 591

[10] Tian R Z, Wang Z T. Handbook of Aluminum Alloys. 2nd Ed., Changsha: Central South University Press, 2000: 64

(田荣璋, 王祝堂. 铝合金及其加工手册. 第二版, 长沙: 中南大学出版社, 2000: 64)

[11] Du G, Yang W, Yan D S, Rong L J. Chin J Nonferrous Met, 2010; 6: 1083

(杜刚, 杨文, 闫德胜, 戎利建. 中国有色金属学报, 2010; 6: 1083)

[12] Forbord B, Lefebvre W, Danoix F, Hallem H, Marthinsen K. Scr Mater, 2004; 51: 333

[13] Royset, J, Ryum, N. Mater Sci Eng, 2005; A396: 409

[14] Royset J, Hovland H, Ryum N. Mater Sci Forum, 2002; 396–402: 619

[15] Du G, Yan D S, Rong L J. Acta Metall Sin, 2008; 44: 1209

(杜刚, 闫德胜, 戎利建. 金属学报, 2008; 44: 1209)

[16] Huang Q Y, Li H K. Superalloy. Beijing: Metallurgical Industry Press, 2000: 22

(黄乾尧, 李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 22)

[17] Fujikawa S I, Sugaya M, Takei H, Hirano K. J Less–Common Met, 1979; 63: 87

[18] Jo H H, Fujikawa S I. Mater Sci Eng, 1993; A171: 151
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!