Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (3): 272-280    DOI: 10.11900/0412.1961.2014.00347
Current Issue | Archive | Adv Search |
EFFECTS OF ELECTROMAGNETIC STIRRING WITH LOW CURRENT FREQUENCY ON RE DISTRIBUTION IN SEMISOLID ALUMINUM ALLOY
LIU Zheng1, LIU Xiaomei1, ZHU Tao1, CHEN Qingchun2
1 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000; 2 School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
Download:  HTML  PDF(6085KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  When solidification of Al alloy melt was disturbed by electromagnetic field, its microstructure and properties were influenced by the diffusion and distribution of the solute and refinement in the melt. So it was necessary to study the metallurgical behavior of RE with electromagnetic stirring and to probe its diffusion and distribution under the forced convection in the melt. The magnetic induction intensity in the electromagnetic crystallizer and its variations with current frequency were simulated by Maxwell 2D software. The distribution of RE in the A356-Y alloy melt and its effect to the microstructure were studied with low frequency electromagnetic stirring. The results indicated that current frequency with stronger magnetic induction could be obtained during the range of low frequency under the working frequency. The slurry of semisolid A356-Y alloy was prepared by electromagnetic stirring at the frequency. The size and shape factor of the primary phase in the alloy were below 65 mm and above 0.80, respectively, which could satisfy the requirement of semisolid alloy rheoforming. The distribution of Y enriched at the edge of the ingot along its radius direction by the driving of electromagnetic field, but was effected by the frequency. Y presented the enriching at the edge of the ingot with the increase of the frequency under the range of the frequency tested.
Key words:  aluminum alloy      electromagnetic stirring      current frequency      semisolid      rare earth     
ZTFLH:  TG146  
  TG244  
Fund: ; Supported by National Natural Science Foundation of China (No.51361012), Natural Science Foundation of Jiangxi Province (No.20114bab206014) and Science and Technology Program of the Education Department of Jiangxi Province (No.GJJ14407)
Corresponding Authors:  Correspondent: LIU Zheng, professor, Tel: (0797)8312428, E-mail: liukk66@163.com     E-mail:  liukk66@163.com

Cite this article: 

LIU Zheng, LIU Xiaomei, ZHU Tao, CHEN Qingchun. EFFECTS OF ELECTROMAGNETIC STIRRING WITH LOW CURRENT FREQUENCY ON RE DISTRIBUTION IN SEMISOLID ALUMINUM ALLOY. Acta Metall Sin, 2015, 51(3): 272-280.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00347     OR     https://www.ams.org.cn/EN/Y2015/V51/I3/272

  Mold (a) and grid chart (b) of magnetic field generator in electromagnetic crystallizer
  Distributions of line of magnetic force in electromagnetic crystallizer at current frequencies of 10 Hz (a), 20 Hz (b), 30 Hz (c) and 40 Hz (d)
  Distributions of magnetic induction in electromagnetic crystallizer at current frequencies of 10 Hz (a), 20 Hz (b), 30 Hz (c) and 40 Hz (d)
  Microstructures of primary a phase in semisolid A356-Y alloy before (a) and after stirring by 30 Hz for 15 s in the edge (b) and core (c) areas of alloy
  Average equal-area circle diameter D (a) and shape factor F (b) of a phase in A356-Y alloy at different electromagnetic frequencies
  SEM-BE images of A356-Y Al alloy stirred at frequencies of 10 Hz (a), 20 Hz (b), 30 Hz (c) and 40 Hz (d)
  Distributions of RE along the radial direction of ingot stirred at frequencies of 10 Hz (a), 20 Hz (b), 30 Hz (c) and 40 Hz (d)
[1] Li T J, Wen B, Zhang Z F, Jin J Z. J Dalian Univ Technol, 2000; 40(s1): 61 (李廷举, 温 斌, 张志峰, 金俊泽. 大连理工大学学报, 2000; 40(增刊1): 61)
[2] Bai Y F, Zhou Y M, Yan B, Zhang Y J, Xu D M, Guo J J, Fu H Z. Foundry, 2008; 57: 105 (白云峰, 周月明, 严 彪, 张永杰, 徐达鸣, 郭景杰, 傅恒志. 铸造, 2008; 57: 105)
[3] Barman N, Kumar P, Dutta P. J Mater Process Technol, 2009; 209: 5912
[4] Liu Z, Hu Y M, Liu X M. Acta Metall Sin (Engl Lett), 2010; 23: 277
[5] Maja V, Stanislav K, Primo M, Jo?ef M. J Alloys Compd, 2011; 509: 7349
[6] Wan D Q. Rare Met, 2010; 29: 460
[7] Nogita K, Yasuda H, Yoshiya M. J Alloys Compd, 2010; 489: 415
[8] Kaur P, Dwivedi D K, Pathak P M. Int J Adv Manuf Technol, 2012; 58: 219
[9] Yurko J A. Die Cast Eng, 2002; (4): 20
[10] Mao W M, Bai Y L, Tang G X. J Mater Sci Technol, 2006; 22: 447
[11] Zuo Y B, Zhao Z H, Zhu Q F, Cui J Z. Chin J Nonferrous Met, 2013; 23: 51 (左玉波, 赵志浩, 朱庆丰, 崔建忠. 中国有色金属学报, 2013; 23: 51)
[12] Liu Z, Mao W M, Zhao Z D. Trans Nonferrous Met Soc China, 2006; 16: 71
[13] Liu Z, Mao W M, Zhao Z D. Acta Metall Sin, 2009; 45: 507 (刘 政, 毛卫民, 赵振铎. 金属学报, 2009; 45: 507)
[14] Liu Z, Wang F Y, Cao K, Xu H B, Huang M Y. Adv Mater Res, 2012; 430-432: 886
[15] Yao C F, Guo X P, Guo H S. Acta Metall Sin, 2008; 44: 579 (姚成方, 郭喜平, 郭海生. 金属学报, 2008; 44: 579)
[16] Prodhan A, Sivaramakrishnan C S, Chakrabarti A K. Metall Mater Trans, 2001; 32B: 372
[17] Dao V L, Zhao S D, Lin W J. J Mech Eng, 2012; 48(14): 50 (陶文琉, 赵升吨, 林文捷. 机械工程学报, 2012; 48(14): 50)
[18] Zhang B J, Cui J Z, Lu G M, Zhang Q, Ban C Y. Acta Metall Sin, 2002; 38: 215 (张北江, 崔建忠, 路贵民, 张 勤, 班春燕. 金属学报, 2002; 38: 215)
[19] Barman N, Dutta P. Trans Indian Inst Met, 2009; 62: 469
[20] Chen D D, Zhang H T, Wang X J, Cui J Z. Acta Metall Sin, 2011; 47: 185 (陈丹丹, 张海涛, 王向杰, 崔建中. 金属学报, 2011; 47: 185)
[21] Vives C. Metall Trans, 1992; 23B: 189
[22] Chen X R, Zhang Z F, Xu J, Shi L K. Chin J Nonferrous Met, 2010; 20: 937 (陈兴润, 张志峰, 徐 骏, 石力开. 中国有色金属学报, 2010; 20: 937)
[23] Yang M S, Zhao A M, Mao W M, Gao J F, Zhong X Y. J Iron Steel Res, 2003; 15(4): 18 (杨卯生, 赵爱民, 毛卫民, 高军芳, 钟雪友. 钢铁研究学报, 2003; 15(4): 18)
[24] Takamichi I, Roderick I L G. The Physical Properties of Liquid Metals. New York: Oxford University Press Inc., 1988: 255
[25] Sun Q X, Zhong Y B, Ren Z M, Lou L, Deng K, Xu K D. Acta Metall Sin, 2005; 41: 321 (孙秋霞, 钟云波, 任忠鸣, 楼 磊, 邓 康, 徐匡迪. 金属学报, 2005; 41: 321)
[26] Kang C G, Bae J W, Kim B M. J Mater Process Technol, 2007; 187-188: 344
[27] Willers B, Eckert S, Nikrityuk P A, Rabiger D, Dong J, Eckert K, Gerbeth G. Metall Mater Trans, 2008; 39B: 304
[28] Chung I G, Bolouri A, Kang C G. Int J Adv Manuf Technol, 2012; 58: 237
[29] Meng X H, Chen C L, Hong Z Y, Wang J Y. Sci China, 2006; 49E: 274
[30] Kaur P, Dwivedi D K, Pathak P M. Int J Adv Manuf Technol, 2012; 63: 415
[1] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[2] WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. 金属学报, 2020, 56(1): 119-128.
[3] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[4] Yu HUANG, Guoguang CHENG, You XIE. Modification Mechanism of Cerium on the Inclusions in Drill Steel[J]. 金属学报, 2018, 54(9): 1253-1261.
[5] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[6] Yingkai SHAO, Yuxi WANG, Zhibin YANG, Chunyuan SHI. Plasma-MIG Hybrid Welding Hot Cracking Susceptibility of 7075 Aluminum Alloy Based on Optimum of Weld Penetration[J]. 金属学报, 2018, 54(4): 547-556.
[7] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
[8] Yi MEI, Quanlong SUN, Lihua YU, Chuanrong WANG, Huaqiang XIAO. Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM[J]. 金属学报, 2017, 53(9): 1125-1132.
[9] Yanli LIN, Zhubin HE, Guannan CHU, Yongda YAN. A New Method for Directly Testing the Mechanical Properties of Anisotropic Materials in Bi-Axial Stress State by Tube Bulging Test[J]. 金属学报, 2017, 53(9): 1101-1109.
[10] Junzhou CHEN, Liangxing LV, Liang ZHEN, Shenglong DAI. Quantitative Characterization on the Precipitation of AA 7055 Aluminum Alloy by SAXS[J]. 金属学报, 2017, 53(8): 897-906.
[11] Xuan YU, Zhihao ZHANG, Jianxin XIE. Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content[J]. 金属学报, 2017, 53(8): 927-936.
[12] Jianhai YANG,Yuxiang ZHANG,Liling GE,Xiao CHENG,Jiazhao CHEN,Yang GAO. Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints[J]. 金属学报, 2017, 53(7): 842-850.
[13] Mingming MA,Feng LIAN,Luping ZANG,Qiukuan XIANG,Huichen ZHANG. Effect of Dimple Depth on Friction Properties of Aluminum Alloy Under Different Lubrication Conditions[J]. 金属学报, 2017, 53(4): 406-414.
[14] Guannan CHU,Yanli LIN,Weining SONG,Lin ZHANG. Forming Limit of FSW Aluminum Alloy Blank Based on a New Constitutive Model[J]. 金属学报, 2017, 53(1): 114-122.
[15] Jinrong ZUO,Longgang HOU,Jintao SHI,Hua CUI,Linzhong ZHUANG,Jishan ZHANG. PRECIPITATES AND THE EVOLUTION OF GRAIN STRUCTURES DURING DOUBLE-STEP ROLLING OF HIGH-STRENGTH ALUMINUM ALLOYAND RELATED PROPERTIES[J]. 金属学报, 2016, 52(9): 1105-1114.
No Suggested Reading articles found!