Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (3): 272-280    DOI: 10.11900/0412.1961.2014.00347
Current Issue | Archive | Adv Search |
EFFECTS OF ELECTROMAGNETIC STIRRING WITH LOW CURRENT FREQUENCY ON RE DISTRIBUTION IN SEMISOLID ALUMINUM ALLOY
LIU Zheng1(), LIU Xiaomei1, ZHU Tao1, CHEN Qingchun2
1 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
2 School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
Cite this article: 

LIU Zheng, LIU Xiaomei, ZHU Tao, CHEN Qingchun. EFFECTS OF ELECTROMAGNETIC STIRRING WITH LOW CURRENT FREQUENCY ON RE DISTRIBUTION IN SEMISOLID ALUMINUM ALLOY. Acta Metall Sin, 2015, 51(3): 272-280.

Download:  HTML  PDF(6085KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

When solidification of Al alloy melt was disturbed by electromagnetic field, its microstructure and properties were influenced by the diffusion and distribution of the solute and refinement in the melt. So it was necessary to study the metallurgical behavior of RE with electromagnetic stirring and to probe its diffusion and distribution under the forced convection in the melt. The magnetic induction intensity in the electromagnetic crystallizer and its variations with current frequency were simulated by Maxwell 2D software. The distribution of RE in the A356-Y alloy melt and its effect to the microstructure were studied with low frequency electromagnetic stirring. The results indicated that current frequency with stronger magnetic induction could be obtained during the range of low frequency under the working frequency. The slurry of semisolid A356-Y alloy was prepared by electromagnetic stirring at the frequency. The size and shape factor of the primary phase in the alloy were below 65 mm and above 0.80, respectively, which could satisfy the requirement of semisolid alloy rheoforming. The distribution of Y enriched at the edge of the ingot along its radius direction by the driving of electromagnetic field, but was effected by the frequency. Y presented the enriching at the edge of the ingot with the increase of the frequency under the range of the frequency tested.

Key words:  aluminum alloy      electromagnetic stirring      current frequency      semisolid      rare earth     
ZTFLH:  TG146  
  TG244  
Fund: Supported by National Natural Science Foundation of China (No.51361012), Natural Science Foundation of Jiangxi Province (No.20114bab206014) and Science and Technology Program of the Education Department of Jiangxi Province (No.GJJ14407)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00347     OR     https://www.ams.org.cn/EN/Y2015/V51/I3/272

Fig.1  Mold (a) and grid chart (b) of magnetic field generator in electromagnetic crystallizer
Fig.2  Distributions of line of magnetic force in electromagnetic crystallizer at current frequencies of 10 Hz (a), 20 Hz (b), 30 Hz (c) and 40 Hz (d)
Fig.3  Distributions of magnetic induction in electromagnetic crystallizer at current frequencies of 10 Hz (a), 20 Hz (b), 30 Hz (c) and 40 Hz (d)
Fig.4  Microstructures of primary a phase in semisolid A356-Y alloy before (a) and after stirring by 30 Hz for 15 s in the edge (b) and core (c) areas of alloy
Fig.5  Average equal-area circle diameter D (a) and shape factor F (b) of a phase in A356-Y alloy at different electromagnetic frequencies
Fig.6  SEM-BE images of A356-Y Al alloy stirred at frequencies of 10 Hz (a), 20 Hz (b), 30 Hz (c) and 40 Hz (d)
Fig.7  Distributions of RE along the radial direction of ingot stirred at frequencies of 10 Hz (a), 20 Hz (b), 30 Hz (c) and 40 Hz (d)
[1] Li T J, Wen B, Zhang Z F, Jin J Z. J Dalian Univ Technol, 2000; 40(s1): 61
(李廷举, 温 斌, 张志峰, 金俊泽. 大连理工大学学报, 2000; 40(增刊1): 61)
[2] Bai Y F, Zhou Y M, Yan B, Zhang Y J, Xu D M, Guo J J, Fu H Z. Foundry, 2008; 57: 105
(白云峰, 周月明, 严 彪, 张永杰, 徐达鸣, 郭景杰, 傅恒志. 铸造, 2008; 57: 105)
[3] Barman N, Kumar P, Dutta P. J Mater Process Technol, 2009; 209: 5912
[4] Liu Z, Hu Y M, Liu X M. Acta Metall Sin (Engl Lett), 2010; 23: 277
[5] Maja V, Stanislav K, Primo M, Jožef M. J Alloys Compd, 2011; 509: 7349
[6] Wan D Q. Rare Met, 2010; 29: 460
[7] Nogita K, Yasuda H, Yoshiya M. J Alloys Compd, 2010; 489: 415
[8] Kaur P, Dwivedi D K, Pathak P M. Int J Adv Manuf Technol, 2012; 58: 219
[9] Yurko J A. Die Cast Eng, 2002; (4): 20
[10] Mao W M, Bai Y L, Tang G X. J Mater Sci Technol, 2006; 22: 447
[11] Zuo Y B, Zhao Z H, Zhu Q F, Cui J Z. Chin J Nonferrous Met, 2013; 23: 51
(左玉波, 赵志浩, 朱庆丰, 崔建忠. 中国有色金属学报, 2013; 23: 51)
[12] Liu Z, Mao W M, Zhao Z D. Trans Nonferrous Met Soc China, 2006; 16: 71
[13] Liu Z, Mao W M, Zhao Z D. Acta Metall Sin, 2009; 45: 507
(刘 政, 毛卫民, 赵振铎. 金属学报, 2009; 45: 507)
[14] Liu Z, Wang F Y, Cao K, Xu H B, Huang M Y. Adv Mater Res, 2012; 430-432: 886
[15] Yao C F, Guo X P, Guo H S. Acta Metall Sin, 2008; 44: 579
(姚成方, 郭喜平, 郭海生. 金属学报, 2008; 44: 579)
[16] Prodhan A, Sivaramakrishnan C S, Chakrabarti A K. Metall Mater Trans, 2001; 32B: 372
[17] Dao V L, Zhao S D, Lin W J. J Mech Eng, 2012; 48(14): 50
(陶文琉, 赵升吨, 林文捷. 机械工程学报, 2012; 48(14): 50)
[18] Zhang B J, Cui J Z, Lu G M, Zhang Q, Ban C Y. Acta Metall Sin, 2002; 38: 215
(张北江, 崔建忠, 路贵民, 张 勤, 班春燕. 金属学报, 2002; 38: 215)
[19] Barman N, Dutta P. Trans Indian Inst Met, 2009; 62: 469
[20] Chen D D, Zhang H T, Wang X J, Cui J Z. Acta Metall Sin, 2011; 47: 185
(陈丹丹, 张海涛, 王向杰, 崔建中. 金属学报, 2011; 47: 185)
[21] Vives C. Metall Trans, 1992; 23B: 189
[22] Chen X R, Zhang Z F, Xu J, Shi L K. Chin J Nonferrous Met, 2010; 20: 937
(陈兴润, 张志峰, 徐 骏, 石力开. 中国有色金属学报, 2010; 20: 937)
[23] Yang M S, Zhao A M, Mao W M, Gao J F, Zhong X Y. J Iron Steel Res, 2003; 15(4): 18
(杨卯生, 赵爱民, 毛卫民, 高军芳, 钟雪友. 钢铁研究学报, 2003; 15(4): 18)
[24] Takamichi I,Roderick I L G. The Physical Properties of Liquid Metals. New York: Oxford University Press Inc., 1988: 255
[25] Sun Q X, Zhong Y B, Ren Z M, Lou L, Deng K, Xu K D. Acta Metall Sin, 2005; 41: 321
(孙秋霞, 钟云波, 任忠鸣, 楼 磊, 邓 康, 徐匡迪. 金属学报, 2005; 41: 321)
[26] Kang C G, Bae J W, Kim B M. J Mater Process Technol, 2007; 187-188: 344
[27] Willers B, Eckert S, Nikrityuk P A, Rabiger D, Dong J, Eckert K, Gerbeth G. Metall Mater Trans, 2008; 39B: 304
[28] Chung I G, Bolouri A, Kang C G. Int J Adv Manuf Technol, 2012; 58: 237
[29] Meng X H, Chen C L, Hong Z Y, Wang J Y. Sci China, 2006; 49E: 274
[30] Kaur P, Dwivedi D K, Pathak P M. Int J Adv Manuf Technol, 2012; 63: 415
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[5] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[6] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[7] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[8] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[9] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[10] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[11] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[12] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[13] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[14] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[15] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
No Suggested Reading articles found!