Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (3): 365-371    DOI: 10.3724/SP.J.1037.2012.00556
Current Issue | Archive | Adv Search |
INVESTIGATION OF EFFECT OF INTERFACE ENERGY ANISOTROPY ON DENDRITIC GROWTH IN UNIDIRECTIONAL SOLIDIFICATION BY FRONT TRACKING SIMULATION
PENG Dongjian, LIN Xin, ZHANG Yunpeng, GUO Xiong, WANG Meng, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

PENG Dongjian, LIN Xin, ZHANG Yunpeng, GUO Xiong, WANG Meng, HUANG Weidong. INVESTIGATION OF EFFECT OF INTERFACE ENERGY ANISOTROPY ON DENDRITIC GROWTH IN UNIDIRECTIONAL SOLIDIFICATION BY FRONT TRACKING SIMULATION. Acta Metall Sin, 2013, 49(3): 365-371.

Download:  PDF(631KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The dendritic growth with the different solid/liquid (S/L) interface energy anisotropies in theunidirectional solidification has been investigated using the self-consistent front tracking model. It is found that,for a given solidification condition, there were two kind of interface shape solutions with the different spacing Peclect number ranges. The interface shape with the small spacing Peclect number range was similar with cellular tip, and that with the large spacing Peclect number range referred to dendritic tip.The higher S/L interface energy anisotropy was in favor of the widening of the dendritic growth solution range. There was a certain power exponential relationship between the dendritic tip marginal stability parameterσ* and the S/L interface energy anisotropic parameter E4. A modified Fisher dendritic tip solution, which considered the effect of S/L interface energy anisotropy, was obtained as follows: RIMS=2.5646[гDL/Vk0T0]0.5E4-0.1905,△T0=mC0(k0-1)/k0. The undercooling in front of the S/L interface decreased with increasing the anisotropic parameter. The primary dendritic spacing mainly depended on the interaction of solute diffusion field between the adjacent dendrite, and the S/L interface energy had little influence on the primary dendritic spacing due to its localized effect on the solute diffusion field near the dendritic tip.

Key words:  interface energy anisotropy      unidirectional solidification      dendritic tip radius      primary spacing     
Received:  21 September 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00556     OR     https://www.ams.org.cn/EN/Y2013/V49/I3/365

[1] Kessler D A, Koplik J, Levine H.Adv Phys, 1988; 37: 255


[2] Kessler D A, Levine H.Phys Rev, 1986; 33B: 7867

[3] Barbieri A, Hong D C, Langer J S.Phys Rev, 1987; 35A: 1802

[4] Xu J J.Phys Rev, 1991; 43A: 930

[5] Xu J J, Pan Z X.J Cryst Growth, 1993; 129: 666

[6] Xu J J.Phys Rev, 1996; 53E: 5051

[7] Kurz W, Fisher D J.Acta Metall, 1981; 29: 11

[8] Hunt J D, McCartney D G.Acta Metall, 1987; 35: 89

[9] Trivedi R.J Cryst Growth, 1980; 48: 93

[10] Langer J S, Muller-Krumbhaar H.Acta Metall, 1978; 26: 1681

[11] Muller-Krumbhaar H, Langer J S.Acta Metall, 1978; 26: 1697

[12] Chalmers B.Principle of Solidification. New York: Wiley, 1964: 105

[13] Shan B W, Huang W D, Lin X, Wei L.Acta Metall Sin, 2008; 40: 1042

(单博伟, 黄卫东, 林鑫, 魏雷. 金属学报, 2008; 40: 1042)

[14] Utter B, Bodenschatz E.Phys Rev, 2005; 72E: 011601

[15] Li C X, San J C, Guo T M, Wang H, Wang F X.J Synthetic Cryst, 2005; 34: 870

(李晨希, 伞晶超, 郭太明, 王宏, 王凤翔. 人工晶体学报, 2005; 34: 870)

[16] Wang Z J.PhD Disertation, Northwestern Polytechnical University, Xi'an, 2009

(王志军. 西北工业大学博士学位论文, 西安, 2009)

[17] Lu S Z, Hunt J D.J Cryst Growth, 1992; 123: 17

[18] Lin X, Li Y M, Liu Z X, Li T, Huang W D.Sci Technol Adv Mater, 2001; 2: 293

[19] Patankar S V.Numerical Heat Transfer and Fluid Flow. London: Hemisphere Publishing Corp, 1970: 30

[20] McCartney D G, Hunt J D.Metall Trans, 1984; 15A: 983

[21] Lipton J, Glicksman M E, Kurz W.Metall Trans, 1987; 18A: 341

[22] Somboonsuk K, Mason J T, Trivedi R.Metall Trans, 1984; 15A: 967

[23] Burden M H, Hunt J D.J Cryst Growth, 1974; 22: 109

[24] Karma A, Sarkissian A.Metall Mater Trans, 1996; 27A: 635

[25] Hunziker O, Vandyoussefi M, Kurz W.Acta Mater, 1998; 46: 6325

[26] Langer J S.Rev Mod Phys, 1980; 52: 1

[27] Warren J A, Langer J S.Phys Rev, 1993; 47E: 2702

[28] Langer J S, Muller-Krumbhaar H.J Cryst Growth, 1977; 42: 11

[29] Kurz W, Fisher D J.Acta Metall, 1981; 29: 11

[30] Trivedi R.J Cryst Growth, 1980; 48: 93

 
[1] Shuangming LI, Binqiang WANG, Zhenpeng LIU, Hong ZHONG, Rui HU, Yi LIU, Ximing LUO. Grain Orientation Competitive Growth of High Melting Point Metals Ir and Mo Under Electron Beam Floating Zone Melting[J]. 金属学报, 2018, 54(10): 1435-1441.
[2] YANG Qianqian, LIU Yuan, LI Yanxiang. MODELING AND SIMULATION OF STRUCTURAL FORMATION OF POROUS ALUMINUM IN GASAR SOLIDIFICATION[J]. 金属学报, 2014, 50(11): 1403-1412.
[3] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(3): 329-333.
[4] YANG Mei WANG Gang TENG Chunyu XU Dongsheng ZHANG Jian YANG Rui WANG Yunzhi . 3D PHASE FIELD SIMULATION OF EFFECT OF INTERFACIAL ENERGY ANISOTROPY ON SIDEPLATE GROWTH IN Ti–6Al–4V[J]. 金属学报, 2012, 48(2): 148-158.
[5] GAN Chunlei LIU Xuefeng HUANG Haiyou XIE Jianxin. FABRICATION PROCESS, MICROSTRUCTURE AND MECHANICAL PROPERTIES OF BFe10–1–1 ALLOY TUBES BY CONTINUOUS UNIDIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2010, 46(12): 1549-1556.
[6] QIAO Junwei ZHANG Yong CHEN Guoliang. SYNTHESIS OF PLASTIC Zr–BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2009, 45(4): 410-414.
[7] SHAN Bo-Wei; Weidong Huang; Xin Lin. Dendrite Primary Spacing Selection Simulation by the Cellular Automaton Model[J]. 金属学报, 2008, 44(9): 1042-1050 .
[8] Hua-Wei ZHANG. The Critical Processing Conditions for Directional Solidification of Solid/Gas Eutectics[J]. 金属学报, 2007, 43(6): 589-594 .
[9] Hua-Wei ZHANG. Difficulty in Fabricating Lotus-type Porous Al by Gasar Process[J]. 金属学报, 2007, 42(1): 11-16 .
[10] . Preparation of high aluminum containing albronze alloy wires by continuous unidirectional solidification[J]. 金属学报, 2006, 42(12): 1243-1247 .
[11] ZHANG Huawei; LI Yanxiang; LIU Yuan. Evaluation of Porosity in Lotus--Type Porous Cu Fabricated with Gasar Process[J]. 金属学报, 2006, 42(11): 1165-1170 .
[12] ZHANG Huawei; LI Yanxiang; LIU Yuan. Gas Pressure Condition for Obtaining Uniform Lotus--Type Porous Structure by Gasar Process[J]. 金属学报, 2006, 42(11): 1171-1176 .
[13] . Research on the solidification characteristic scale and undercooling during directional solidification of single-phase alloy[J]. 金属学报, 2006, 42(10): 1025-1030 .
[14] JIANG Chengbao; LIU Jinghua; ZHANG Tao; XU Huibin. The Solid-Liquid Interface Morphology of the Unidirectionally Solidified Ni2MnGa Magnetic Shape Memory Alloy[J]. 金属学报, 2004, 40(9): 975-980 .
[15] CUI Hongbao; GUO Jingjie; BI Weisheng; SU Yanqing; WU Shiping; FU Hengzhi. THE EVOLUTION OF UNIDIRECTIONAL SOLIDIFI-CATION MICROSTRUCTURE OF THE Al-In MONOTECTIC ALLOYS IN HIGH TEMPERATURE GRADIENT[J]. 金属学报, 2004, 40(12): 1253-1256 .
No Suggested Reading articles found!