Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (10): 1234-1242    DOI: 10.3724/SP.J.1037.2013.00288
Current Issue | Archive | Adv Search |
STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD
PANG Ruipeng1,2), WANG Fuming 1,2), ZHANG Guoqing1,2), LI Changrong 3)
1) State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083
2) School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
3) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

PANG Ruipeng, WANG Fuming, ZHANG Guoqing, LI Changrong. STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD. Acta Metall Sin, 2013, 49(10): 1234-1242.

Download:  PDF(1490KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The dendrite tip growth kinetic coefficients and Gauss distribution parameters for 3D-CAFE simulation are determined according to the main compositions of 430 ferrite stainless steel and the macrostructure forming under the experimental condition of slow cooling. Based on the repeated computation with different heat transfer coefficients, the heat transfer coefficient under slow condition is determined when the solidification structure by above simulation computation is basically the same as the experimental one under slow cooling. The temperature fields and flow fields of 430 ferrite stainless steel during the solidification process under the conditions of slow cooling, air cooling and water cooling were analyzed by use of 3D-CAFE method, respectively. The results show that the temperature field of solidification process under slow cooling condition is the most uniform and the solid-liquid region is the widest, followed by air cooling condition, while the temperature field under water cooling is quite non-uniform and the solid-liquid region is the narrowest. The maximum solidification rates are 2.3 mm/s with slow cooling, 3.0 mm/s with air cooling and 3.3 mm/s with water cooling, respectively, which are obtained in the center of the castings. The maximum flow rate is obtained in the center of casting with the value of 8.9 mm/s under slow cooling condition, and the maximum flow rate is 9.8 mm/s near the side wall under air cooling condition, while the maximum flow rate is 4.6 mm/s at the position with the 3/5 distance from the side wall under water cooling condition. The solidification structure of casting is composed of almost all equiaxed grains under slow cooling condition, and only a few equiaxed grains exist in the centre of casting under air cooling condition, while the solidification structure of casting consists of coarse columnar grains under water cooling condition.

Key words:  solidification rate      temperature field      flow rate      3D-CAFÉ     
Received:  28 May 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00288     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1234

[1] Hamada J, Matsumoto Y, Fudanoki F. ISIJ Int, 2003; 43: 1989

[2] Chang L Z, Shi X F, Yang H S, Li Z B. J Iron Steel Res Int, 2009; 16: 7
[3] Tsuji N, Tsuzaki K, Maki T. ISIJ Int, 1994; 34: 1008
[4] Yoshihiro Y, Yoshihiro O, Yasushi K, Osamu F. J Rev, 2003; 24: 483
[5] Hyung J S, Joong K A, Soo H P, Dong N L. Acta Mater, 2003; 51: 4693
[6] Huh M Y, Engler O. Mater Sci Eng, 2001; A308: 74
[7] Shin Y H, Hong C P. ISIJ Int, 2002; 42: 359
[8] Chang S R, Kim J M, Hong C P. ISIJ Int, 2001; 41: 738
[9] Gandin C A, Rappaz M. Acta Mater, 1997; 45: 2187
[10] Rappaz M, Gandin C A. Acta Mater Sin, 1993; 41: 345
[11] Couturier G, Rappaz M. Model Simul Mater Sci Eng, 2006; 14: 253
[12] David R J, Haruyuki I, Shinji M, Yuji O, Takamitsu Y. Acta Mater, 2006; 54: 1077
[13] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436
[14] Kang X H, Du Q, Li D Z, Li Y Y. Acta Metall Sin, 2004; 5: 452
(康秀红, 杜强, 李殿中, 李依依. 金属学报, 2004; 5: 452)
[15] Ignaszak Z, Hajkowski M, Hajkowski J. Mater Sci, 2006; 12: 124
[16] Gildas G, Charles-Andre G, Herve C. ISIJ Int, 2006; 46: 880
[17] Zhu M F, Kim J M, Hong C P. ISIJ Int, 2001; 41: 992
[18] Kattner U R. JOM, 1997; 49: 14
[19] Saunders N, Miodownik A P. Calculation of Phase Diagrams: A Comprehensive Guide.London: Oxford University Press, 1998: 33
[20] Hwangh J D, Lin J, Hwang W S. ISIJ Int, 1995; 35: 170
[21] Wang J L, Wang F M, Li C R, Zhang J M. ISIJ Int, 2010; 50: 222
[22] Zuo Y B, Cui J Z, Zhao Z H, Zhu Q F, Qu F, Wang X J. Chin J Rare Met, 2010; 32: 325
(左玉波, 崔建忠, 赵志浩, 朱庆丰, 屈福, 王向杰. 稀有金属, 2008; 32: 325)
[23] McFadden S, Browne D J, Gandin C A. Metall Mater Trans, 2009; 40A: 662
[24] Poole W J, Weinberg F. Metall Mater Trans, 1998; 29A: 885
[25] Ma Y P. Metal Solidification Theory and Technique. Beijing: Metallurgical Industry Press, 2008: 76

(马幼平. 金属凝固理论与技术. 北京: 冶金工业出版社, 2008: 76)

[1] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[2] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[3] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
[4] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
[5] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
[6] YANG Qianqian, LIU Yuan, LI Yanxiang. MODELING AND SIMULATION OF STRUCTURAL FORMATION OF POROUS ALUMINUM IN GASAR SOLIDIFICATION[J]. 金属学报, 2014, 50(11): 1403-1412.
[7] ZHAO Bo, WU Chuansong,JIA Chuanbao, YUAN Xin. NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING[J]. 金属学报, 2013, 49(7): 797-803.
[8] XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong. MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL[J]. 金属学报, 2013, 49(5): 605-613.
[9] WEI Jie DONG Junhua KE Wei. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR[J]. 金属学报, 2012, 48(1): 115-121.
[10] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADING I. Graphite Mould Method[J]. 金属学报, 2011, 47(12): 1495-1502.
[11] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADDING
II. Copper Mould Method
[J]. 金属学报, 2011, 47(12): 1503-1512.
[12] YANG Lili ZHENG Lijing XIAO Zhixia YAN Jie ZHANG Hu. EFFECT OF WITHDRAWAL RATE ON THE MICROSTRUCTURE OF DIRECTIONAL SOLIDIFIED Ti-47Al-2Cr-2Nb-0.8B ALLOYS[J]. 金属学报, 2010, 46(7): 879-884.
[13] ZHANG Song YUAN Guangyin LU Chen DING Wenjiang. EFFECT OF COOLING RATE ON THE FORMATION OF 14H–LPSO STRUCTURE IN GWZ1032K ALLOY[J]. 金属学报, 2010, 46(10): 1192-1199.
[14] GUO Zhipeng XIONG Shoumei Mei Li John Allison. RELATIONSHIP BETWEEN METAL-DIE INTERFACIAL HEAT TRANSFER COEFFICIENT AND CASTING SOLIDIFICATION RATE IN HIGH PRESSURE DIE CASTING PROCESS[J]. 金属学报, 2009, 45(1): 102-106.
[15] ;. A novel method for solidification rate measurement of weld pool surface[J]. 金属学报, 2008, 44(9): 1131-1135 .
No Suggested Reading articles found!