Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1025-1030    DOI: 10.11900/0412.1961.2014.00148
Current Issue | Archive | Adv Search |
INFLUENCE OF Ru AND Cr ON SOLIDIFICATION PROCESS IN A Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY
LUO Yinping, ZHOU Yizhou(), LIU Jinlai
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LUO Yinping, ZHOU Yizhou, LIU Jinlai. INFLUENCE OF Ru AND Cr ON SOLIDIFICATION PROCESS IN A Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2014, 50(9): 1025-1030.

Download:  HTML  PDF(5658KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of addition of Ru and change of Cr content on solidification behaviors are systematically investigated in a Re-free Ni-based single crystal superalloy with a fixed mass fraction additions of Ru and Cr, with the use of DTA, OM, SEM and EPMA. The results show that the addition of Ru can increase the eutectic fraction, facilitate the formation of Ru-rich phase which would increase largely at the time of Ru and Cr addition synchronously. Ru addition can promotes W segregate to the dendrite arm, and inhibits Mo to segregate to the interdendritic region. The increasement of Cr addition can decrease the segregation ratio of W, but have little effect on Mo. The combination of Ru and Cr influences the solidification microstructures and segregation behaviors corporately, and thus influences heat treatment processes and the microstructure stability.

Key words:  Ru      Cr      Ni-based single crystal superalloy      solidification behavior      elemental segregation     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (Nos.U1037601 and 51271186) and National Basic Research Program of China (No.2010CB631206)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00148     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1025

Alloy Cr Co+W+Mo Al+Ti+Ta Ru Ni
8Cr0Ru 8.0 18.0 12.5 0.0 Bal.
8Cr3Ru 8.0 18.0 12.5 3.0 Bal.
10Cr0Ru 10.0 18.0 12.5 0.0 Bal.
10Cr3Ru 10.0 18.0 12.5 3.0 Bal.
Table 1  Nominal compositions of experimental alloys
  
Fig.2  OM image showing the solidification microstructure of 10Cr3Ru alloy
Fig.3  SEM images of the eutectic microstructures in experimental alloys
Alloy TP / ℃ TS / ℃ TL / ℃ TS-TP / ℃ TL-TS / ℃
8Cr0Ru 1236 1338 1380 102 42
8Cr3Ru 1225 1328 1373 103 45
10Cr0Ru 1220 1320 1364 100 44
10Cr3Ru 1210 1315 1363 105 48
Table 2  Phase transformation temperatures for experimental alloys at heating process
Fig.4  Eutectic area fraction of experimental alloys
Phase Ti Cr Al Mo Co Ru W Ta Ni
Ru-rich 2.11 11.03 11.97 1.79 5.98 14.27 1.93 4.66 46.26
g 2.50 6.07 5.91 1.46 6.62 2.09 2.02 11.87 61.46
Table 3  EPMA analysis of phases in 10Cr3Ru alloy
Fig.5  Segregation ratio (k) of each element for experimental alloys
[1] Collins H E. Metall Trans, 1974; 6: 189
[2] Giamei A F, Anton D L. Metall Trans, 1985; 16A: 1997
[3] Epishin A, Link T. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 137
[4] Austin C M, Darolia R, O'Hara K S, Ross E. US Pat, 5151249, 1992
[5] Rae C M F, Karunaratne M S A, Small C J, Broomfield R W, Jones C N, Reed R C.In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 767
[6] Rae C M F, Reed R C. Acta Mater, 2001; 49: 4113
[7] Tin S, Pollock T M. Mater Sci Eng, 2003; A348: 111
[8] Murakami H, Honma T, Koizumi Y, Harada H. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 747
[9] Lavigne O, Ramusat C, Drawin S, Caron P, Boivin D, Pouchou J L. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 667
[10] Yeh A C, Rae C M F, Tin S. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 677
[11] O’Hara K S, Walton W S, Ross E W, Darolia R. US Pat, 5482789, 1996
[12] Heckl A, Neumeier S, Cenanovic S, Goken M, Singer R F. Acta Mater, 2011; 59: 6563
[13] Sato A, Harada H, Yokokawa T, Murakumo T, Koizumi Y, Kobayashi T, Imai H. Scr Mater, 2006; 54: 1679
[14] Hobbs R A, Zhang L, Rae C M F, Tin S. Metall Mater Trans, 2008; 39A: 1014
[15] Epishin A, Link T, Brückner U, Fedelich B, Portella P. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 537
[16] Harris K, Erickson G L, Sikkenga S L, Brentnall W D, Aurrecoechea J M, Kubarych K G. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale: TMS, 1992: 287
[17] Carroll L J, Feng Q, Mansfield J F, Pollock T M. Mater Sci Eng, 2007; A457: 292
[18] Caldwell E C, Fela F J, Fuchs G E. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 811
[19] Caron P, Khan T. Aerospace Sci Technol, 1999; 3: 513
[20] Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233
(刘金来, 金 涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233)
[21] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2004; 40: 858
(刘丽荣, 金 涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2004; 40: 858)
[22] Caldwell E C, Fela F J, Fuchs G E. JOM, 2004; 56: 44
[1] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[8] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[9] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[10] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[11] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[12] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[13] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[14] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[15] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
No Suggested Reading articles found!