|
|
LASER-IGNITED SELF-PROPAGATING BEHAVIOR OF SELF-SUPPORTING NANO-SCALED Ti/Al MULTILAYER FILMS |
AN Rong1,2( ), TIAN Yanhong1,2, KONG Lingchao2, WANG Chunqing1,2, CHANG Shuai2 |
1 Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 |
|
Cite this article:
AN Rong, TIAN Yanhong, KONG Lingchao, WANG Chunqing, CHANG Shuai. LASER-IGNITED SELF-PROPAGATING BEHAVIOR OF SELF-SUPPORTING NANO-SCALED Ti/Al MULTILAYER FILMS. Acta Metall Sin, 2014, 50(8): 937-943.
|
Abstract 通过磁控溅射法并借助有机高分子牺牲层, 制备了具有不同调制结构的自支撑Ti/Al (调制比为1)纳米多层膜. 采用脉冲激光诱发了纳米多层膜的自蔓延反应, 确定了临界诱发能量密度. 利用高速摄影法表征了自蔓延速度, 采用SEM和TEM观察了纳米多层膜结构, 利用差热分析仪和XRD分析了反应过程及产物. 结果表明, 纳米多层膜激光诱发临界能量密度(6~17 J/cm2)高于烧蚀临界能量密度. 调制周期或周期数较小的纳米多层膜激光诱发所需的能量密度较小且自蔓延速度较高. 但当调制周期接近或小于层间原子互溶区厚度时, 临界能量密度和自蔓延速度的变化则有相反趋势. 对于一定厚度的纳米多层膜, 具有大调制周期和小周期数的调制结构对应的放热量大. 随激光脉冲持续时间的延长, Ti/Al纳米多层膜的激光临界诱发能量密度呈现递减趋势, 但最终趋于稳定. 激光诱发Ti/Al纳米多层膜自蔓延反应生成单一的TiAl金属间化合物.
|
Received: 17 December 2013
|
|
Fund: Supported by National Natural Science Foundation of China (No.51005055) and Fundamental Research Funds for the Central Universities (No.HIT.NSRIF.2015066) |
[1] |
W J, Bian Y J, Zhang X N, Zhang D, Fang P W, Wu R J. Acta Metall Sin, 1999; 35: 536
|
|
(吕维洁, 卞玉君, 张小农, 张 荻, 方平伟, 吴人洁. 金属学报, 1999; 35: 536)
|
[2] |
W J, Bian Y J. Acta Metall Sin, 2000; 36: 104
|
|
(吕维洁, 卞玉君. 金属学报, 2000; 36: 104)
|
[3] |
Wang W M, Fu Z Y, Yuan R Z. Acta Metall Sin, 1994; 30: 476
|
|
(王为民, 傅正义, 袁润章. 金属学报, 1994; 30: 476)
|
[4] |
Wang X C, Chai H F, Wang X T. Acta Metall Sin, 1995; 31: 300
|
|
(王学成, 柴惠芬, 王笑天. 金属学报, 1995; 31: 300)
|
[5] |
Fu Z Y, Yuan R Z, Munir Z A. Acta Metall Sin, 1993; 29: 92
|
|
(傅正义, 袁润章, Munir Z A. 金属学报, 1993; 29: 92)
|
[6] |
Suryanarayana C, Moore J J, Radtke R P. Adv Mater Processes, 2001; 159: 29
|
[7] |
Wang J, Besnoin E, Duckham A, Spey S J, Reiss M E, Knio O M, Powers M, Whitener M, Weihs T P. Appl Phys Lett, 2003; 83: 3987
|
[8] |
Ma E, Thompson C V, Clevenger L A, Tu K N. Appl Phys Lett, 1990; 57: 1262
|
[9] |
Reiss M E, Esber C M, Heerden D V, Gavens A J, Williams M E, Weihs T P. Mater Sci Eng, 1999; A261: 217
|
[10] |
Rogachev A S, Grigoryan A E, Illarionova E V, Kanel I G, Merzhanov A G, Nosyrev A N, Sachkova N V, Khvesyuk V I, Tsygankov P A. Combust Explos Shock Waves, 2004; 40: 166
|
[11] |
Gachon J C, Rogachev A S, Grigoryan H E, Illarionova E V, Kuntz J J, Kovalev D Y, Nosyrev A N, Sachkova N V, Tsygankov P A. Acta Mater, 2005; 53: 1225
|
[12] |
Peruško D, Petrović S, Kovač J, Stojanović Z, Panjan M, Obradović M, Milosavljević M. J Mater Sci, 2012; 47: 4488
|
[13] |
Petrović S M, Peruško D, Salatić B, Bogdanović-Radović I, Panjan P, Gaković B, Pantelić D, Trtica M, Jelenković B. Opt Laser Technol, 2013; 54: 22
|
[14] |
Atzmon M. Metall Mater Trans, 1992; 23A: 49
|
[15] |
Morris C J, Mary B, Zakar E, Barron S, Fritz G, Knio O, Weihs T P, Hodgin R, Wilkins P, May C. J Phys Chem Solids, 2010; 71: 84
|
[16] |
Wang C, Gao L, Li G, Wang Y, Xia Y, Bysakh S, Dong C. J Mater Sci, 2003; 38: 1377
|
[17] |
Picard Y N, Adams D P, Palmer J A, Yalisove S M. Appl Phys Lett, 2006; 88: 144102
|
[18] |
Picard Y N, McDonald J P, Friedmann T A, Yalisove S M, Adams D P. Appl Phys Lett, 2008; 93: 104104
|
[19] |
Wang J, Besnoin E, Knio O M, Weihs T P. Acta Mater, 2004; 52: 5265
|
[20] |
Wang J, Besnoin E, Knio O M, Weihs T P. J Appl Phys, 2005; 97: 114307
|
[21] |
Furusawa K, Takahashi K, Kumagai H, Midorikawa K, Obara M. Appl Phys, 1999; 69A: 359
|
[22] |
Haynes W M. CRC Handbook of Chemistry and Physics. 93th Ed., Boca Raton: CRC, 2012: 12
|
[23] |
Armstrong R. Combust Sci Technol, 1990; 71: 155
|
[24] |
Mann A B, Gavens A J, Reiss M E, Heerden D V, Bao G, Weihs T P. J Appl Phys, 1997; 82: 1178
|
[25] |
Adams D P, Rodriguez M A, Tigges C, Kotula P. J Mater Res, 2006; 21: 3168
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|