Please wait a minute...
金属学报  1998, Vol. 34 Issue (10): 1104-1114    
  论文 本期目录 | 过刊浏览 |
ZrO_2/Ni阶梯热障涂层的热冲击行为
胡望宇;管恒荣;孙晓峰;李诗卓;福本昌宏;岡根功
中国科学院金属研究所;沈阳;110015;湖南大学应用物理系长沙;410082;中国科学院金属研究所;沈阳;110015;中国科学院金属研究所;沈阳;110015;中国科学院金属研究所;沈阳;110015;丰桥技术科学大学;日本丰桥;丰桥技术科学大学;日本丰桥
THERMAL SHOCK BEHAVIOR OF ZrO_2/Ni GRADED THERMAL BARRIER COATINGS
HU Wangyu; GUAN Hengrong; SUN Xiaofeng; LI Shizhuo; FUKUMOTO Masahiro;OKANE Isao(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Applied Physics; Hunan University; Changsha 410082)(Toyobashi University of Technology Toyobashi; Japan)Correspondent: SUN Xiaofeng; associate profssor Tel: (024)23843531-55608; Fax: (024)23891320
引用本文:

胡望宇;管恒荣;孙晓峰;李诗卓;福本昌宏;岡根功. ZrO_2/Ni阶梯热障涂层的热冲击行为[J]. 金属学报, 1998, 34(10): 1104-1114.
, , , , , . THERMAL SHOCK BEHAVIOR OF ZrO_2/Ni GRADED THERMAL BARRIER COATINGS[J]. Acta Metall Sin, 1998, 34(10): 1104-1114.

全文: PDF(2335 KB)  
摘要: 研究了ZrO2/Ni阶梯热障涂层在火焰喷烧和水淬两种热冲击条件下的失效行为,建立了梯度热障涂层在火焰喷烧和水淬热冲击条件下一维温度场和应力场的解析模型实验结果表明,涂层的抗热冲击能力在火焰喷烧条件下随层次的增加而增强,在水淬热冲击条件下却随层次的增加而降低.证实涂层的抗热冲击能力与热冲击条件有关,并取决于表面换热系数的大小与方向故评价涂层的抗热冲击能力时须合理选择热冲击条件按梯度设计,能大大提高航空发动机叶片及相当热冲击条件使用的热障涂层的抗热冲击能力.
关键词 ZrO_2/Ni阶梯热障涂层热冲击温度场应力场    
Abstract:The failure behaviors of ZrO2/Ni graded thermal barrier coatings under the conditions of thermal shock with fiame jet and water quenching have been studied. The one-dimensi-onal analytic model of temperature and stress field under these conditions for the coatings hasbeen established. The thermal shock resistance of coatings increases with the increase of layersunder the condition of fiame jet and decreases with the increase of layers under the condition ofwater quenching, which can be reasonably explained with the present model. The thermal shockresistance depends on the thermal shock conditions, and is determined by the magnitude anddirection of the surface heat exchange coefficiellt. Therefore, it is necessary to choose suitablethermal shock condition to evaluate the ability to resist shock of coatings. For thermal barriercoatings which are applied to the turbine blade of aeroengine or under the matchable thermalshock conditions, gradient structure mny sigIilficantly improve their ability to resist thermal shock.
Key wordsZrO_2/Ni    graded thermal barrier coating    thermal shock    temperature field    stress field
收稿日期: 1998-10-18     
1 Leibert C H. Thin Solid Filme, 1979; 64: 329
2 乔海潮,丁传贤,无机材料学报,1991; 6: 103(Qiao H C, Ding C X. J Inoroanic Maten 1991; 6: 103)
3 Wason J W, Levina S R. Thin Solid Filme, 1984; 119: 185
4 McDonald G, Hendricks R C. Thin Solid Filme, 1980; 73: 491
5 福本昌宏.山崎隆典,根功.溶射,1993;30:20(Fukumoto M, Yamasaki T, Okane I. Thermal Spraying, 1993; 30(3): 20)
6 Musil J, Fiala J. Snd Codt Technol,1992; 52: 211
7 Taylor T A, Appleby D L, Weatherill A E, Griffiths J. Surf Coat Technol,1990; 43/44: 470
8 Hu W Y, Guan H R, Sun X F, Li S Z. Surf Coat Technol, in press
9 Hu W Y, Lu S, Li S Z, Sun X F, Guan H R, rubology Int, in press
10 Hu W Y, Guan H R, Sun X F, Li S Z. Mater Lett, 1997; 32: 59
11 Hu W Y, Guan H R, Sun X F, Li S Z. i Am Ceram Soc, in press
12 Araki N, Makino A, Mihara J. Int J Thermophgs, 1992; 13: 331
13 Araki N, Makino A, Ishiguro T, Mihara J. Int J Thermophys, 1992; 13: 515
14 Ishtwro T, Makino A, Araki N, Noda N. Int J Thermophys, 1993; 14: 101
15周本濂.见:师昌绪主编,材料科学进展,北京:科学出版社,1986:186(Zhou B L. In: Shi Changxu ed., Materich Science boss, Beijing: Science Press, 1986: 186)
16 Suresh S, Giannakopoulos A E, Olsson M. J Mech Phys Solids, 1994; 42: 979
17 Shen Y L, Suresh S. J Mater Res, 1995; 10: 1200
18 Wang H, Singh R N. Int Mater Rev, 1994; 39: 228
19 Kingery W D, Bowen H K, Uhlmann D R. Intnduction to Ceromics. 2nd ed., New York: John Wiley &Sons Inc, 1976: 816@
[1] 唐海燕, 李小松, 张硕, 张家泉. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020, 56(12): 1629-1642.
[2] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[3] 种晓宇, 汪广驰, 杜军, 蒋业华, 冯晶. ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟[J]. 金属学报, 2018, 54(2): 314-324.
[4] 郭策安, 陈明辉, 廖依敏, 苏北, 谢冬柏, 朱圣龙, 王福会. 模拟燃气热冲击条件下搪瓷基复合涂层的防护机理研究[J]. 金属学报, 2018, 54(12): 1825-1832.
[5] 陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*[J]. 金属学报, 2016, 52(12): 1545-1556.
[6] 薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.
[7] 赵博,武传松,贾传宝,袁新. 水下湿法FCAW焊缝成形的数值分析[J]. 金属学报, 2013, 49(7): 797-803.
[8] 徐庆东,林鑫,宋梦华,杨海欧,黄卫东. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49(5): 605-613.
[9] 庞瑞朋,王福明,张国庆,李长荣. 基于3D-CAFE法对430铁素体不锈钢凝固热参数的研究[J]. 金属学报, 2013, 49(10): 1234-1242.
[10] 柯常波,曹姗姗,马骁,黄平,张新平. NiTi形状记忆合金中Ni4Ti3共格沉淀相自催化生长效应的相场模拟[J]. 金属学报, 2013, 49(1): 115-122.
[11] 魏洁 董俊华 柯伟. 热轧螺纹钢化学剂冷却过程温度场的数值模拟及实验研究[J]. 金属学报, 2012, 48(1): 115-121.
[12] 冯明杰 王恩刚 赫冀成. 高速钢复合轧辊连铸复合过程温度场的数值模拟 I. 石墨铸型法[J]. 金属学报, 2011, 47(12): 1495-1502.
[13] 冯明杰 王恩刚 赫冀成. 高速钢复合轧辊连铸复合过程温度场的数值模拟 II. 铜结晶器法[J]. 金属学报, 2011, 47(12): 1503-1512.
[14] 冯明杰 王恩刚 赫冀成. 带钢热连轧机工作辊非稳态传热的数值模拟[J]. 金属学报, 2010, 46(8): 1009-1017.
[15] 柯常波 马骁 张新平. 外应力对NiTi合金中共格Ni4Ti3沉淀相长大行为影响的相场法模拟[J]. 金属学报, 2010, 46(8): 921-929.