Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1279-1284    DOI: 10.11900/0412.1961.2014.00160
  本期目录 | 过刊浏览 |
不同靶材料的高功率脉冲磁控溅射放电行为
吴忠振1,2(), 田修波2, 潘锋1, 付劲裕3, 朱剑豪3
1 北京大学深圳研究生院新材料学院, 深圳 518055
2 哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨 150001
3 香港城市大学物理与材料科学系, 香港
HIGH POWER PULSED MAGNETRON SPUTTERING DISCHARGE BEHAVIOR OF VARIOUS TARGET MATERIALS
WU Zhongzhensup1,2(), TIAN Xiubosup2, PAN Fengsup1, FU K Y Rsup3, CHU K Psup3
1 School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055
2 State Key Laboratory of Advanced Welding Production and Technology, Harbin Institute of Technology,
Harbin 150001
3 Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
引用本文:

吴忠振, 田修波, 潘锋, 付劲裕, 朱剑豪. 不同靶材料的高功率脉冲磁控溅射放电行为[J]. 金属学报, 2014, 50(10): 1279-1284.
Zhongzhen WU, Xiubo TIAN, Feng PAN, K Y R FU, K P CHU. HIGH POWER PULSED MAGNETRON SPUTTERING DISCHARGE BEHAVIOR OF VARIOUS TARGET MATERIALS[J]. Acta Metall Sin, 2014, 50(10): 1279-1284.

全文: PDF(1529 KB)   HTML
摘要: 

选择具有不同溅射产额的靶材料(Cu, Cr, Mo, Ti, V和C), 研究了其高功率脉冲磁控溅射(HPPMS)放电靶电流波形随靶电压的演化行为. 发现所有材料都满足5个阶段顺序放电特征, 但是不同溅射产额的材料的相同放电阶段所需要的靶电压呈现先增加后下降的趋势, 根据放电难易的不同分别表现出一定阶段的缺失. 对其靶电流平均值、峰值和平台值的统计显示, 溅射产额高的靶材料自溅射容易, 平台稳定, 对靶电流的贡献主要为平台值(金属放电), 比较适用于HPPMS方法沉积薄膜; 而溅射产额低的靶材料气体放电明显, 靶电流主要由峰值(气体放电)贡献, 不利于薄膜沉积.

关键词 高功率脉冲磁控溅射溅射产额靶电流靶电压    
Abstract

Great interesting is induced by high power pulsed magnetron sputtering (HPPMS) for its high ionization of the sputtered materials, while the complex discharge puts of its applications in industry. The HPPMS discharge behaviors of various materials with different sputtering yields (Cu, Cr, Mo, Ti, V and C) were studied. The discharges of all the materials show a phasic discharge characteristic of five continuous stages. However, the target voltage of the same discharge stage of the material increases firstly, and decreases then with the increase of the sputtering yields, exhibiting a missing of certain discharge stage. The statistics of the mean values, peaks and platforms of the target currents show that self-sputtering and stable platform happen easily to the materials with high sputtering yields which is suitable for the thin films deposition by HPPMS, whereas gas discharge is dominated in the discharge of the materials with low sputtering yields, which is difficult in the using of HPPMS. Additional, the target current is mainly contributed to the platform (metal discharge) to the materials with high sputtering yields and the peaks (gas discharge) to the materials with low sputtering yields, respectively.

Key wordshigh power pulsed magnetron sputtering    sputtering yield    target current    target voltage
收稿日期: 2014-06-26     
ZTFLH:  TG174.444  
基金资助:* 国家自然科学基金项目51301004和U1330110, 深圳市科技创新研究基金项目ZDSY20130331145131323, SGLH20120928095706623, CXZZ20120829172325895和JCYJ20120614150338154资助
作者简介: null

吴忠振, 男, 1984年生, 特聘研究员, 博士

图1  HPPMS设备结构示意图[21]
Incident ion energy / eV Cu Cr Mo V Ti C
600 2.30 1.30 0.93 0.70 0.58 0.35
1000 2.80 1.50 1.30 1.05 0.74 0.61
表1  6种靶材料的溅射产额[22]
图2  不同靶材料时HPPMS放电靶电流波形随靶电压的变化曲线
图3  不同靶的靶电流平均值随靶电压的演变
图4  不同靶的靶电流峰值随靶电压的演变
图5  不同靶的靶电流平台值随靶电压的演变
[1] Wan L J, Chen B Q, Guo K X. Acta Metall Sin, 1988; 24: 443
[1] (万立骏, 陈宝清, 郭可信. 金属学报, 1988; 24: 443)
[2] Li Z G, Yu H L, Wu Y X, Miyake S. Acta Metall Sin, 2006; 42: 993
[2] (李铸国, 俞海良, 吴毅雄, 三宅正司. 金属学报, 2006; 42: 993)
[3] Kouznetsov V, Maca′k K, Schneider J M. Surf Coat Technol, 1999; 122: 290
[4] Bohlmark J, Gudmundsson J T, Alami J, Latteman M, Helmersson U. IEEE Trans Plasma Sci, 2005; 33: 346
[5] Bohlmark J, Lattemann M, Gudmundsson J T, Ehiasarian A P, Gonzalvo Y A, Brenning N, Helmersson U. Thin Solid Films, 2006; 515: 1522
[6] Horwat D, Anders A. J Phys, 2008; 41D: 135210
[7] Ehiasarian A P, Gonzalvo Y A, Whitmore T D. Plasma Processes Polym, 2007; 4: S309
[8] Huang M D, Lin G Q, Dong C. Acta Metall Sin, 2003; 39: 510
[8] (黄美东, 林国强, 董 闯. 金属学报, 2003; 39: 510)
[9] Xiao J Q, Lang W C, Zhao Y H, Gong J, Sun C, Wen L S. Acta Metall Sin, 2011; 47: 566
[9] (肖金泉, 郎文昌, 赵彦辉, 宫 骏, 孙 超, 闻立时. 金属学报, 2011; 47: 566
[10] Duan W Z. Master Thesis, Harbin Institute of Technology, 2010
[10] (段伟赞. 哈尔滨工业大学硕士学位论文, 2010)
[11] Gudmundsson J T, Brenning N, Lundin D, Helmersson U. J Vac Sci Technol, 2012; 30A: 030801
[12] Christie D J. Czech J Phys, 2006; 56: B93
[13] Wu Z Z, Tian X B, Cheng S D, Gong C Z, Yang S Q. Acta Metall Sin, 2012; 48: 283
[13] (吴忠振, 田修波, 程思达, 巩春志, 杨士勤. 金属学报, 2012; 48: 283)
[14] Daniel L, Nils B, Daniel J, Larsson P, Wallin E, Lattemann M, Raadu M A, Helmersson U. Plasma Sources Sci Technol, 2009; 18: 045008
[15] Magnus F, Sveinsson O B, Olafsson S, Gudmundsson J T. J Appl Phys, 2011; 110: 083306
[16] Yushkov G Y, Anders A. IEEE Trans Plasma Sci, 2010; 38: 3028
[17] Nakano T, Murata C, Baba S. Vacuum, 2010; 84: 1368
[18] Anders A. J Appl Phys, 2007; 102: 113303
[19] Capek J, Hala M, Zabeida O, Klemberg-Sapieha J E, Martinu L. J Appl Phys, 2012; 111: 023301
[20] Sigmund P. Phys Rev, 1969; 184: 383
[21] Wu Z Z, Tian X B, Duan W Z, Gong C Z, Yang S Q. Chin J Mater Res, 2010; 24: 561
[21] (吴忠振, 田修波, 段伟赞, 巩春志, 杨士勤. 材料研究学报, 2010; 24: 561)
[22] Matsunami N, Yamamura Y, Yukikazu I, Noriaki I, Yukio K, Miyagawa S, Morita K, Shimizu R, Tawara H. At Data Nucl Data Tables, 1984; 31: 1
[23] Tian X B, Wu Z Z, Shi J W, Li X P, Gong C Z, Yang S Q. Chin Vac, 2010; 47(3): 44
[23] (田修波, 吴忠振, 石经纬, 李希平, 巩春志, 杨士勤. 真空, 2010; 47(3): 44)
[24] Wu Z Z, Tian X B, Pan F,Fu R K Y, Chu P K. Acta Phys Sin, 2014; 17: 175201
[24] (吴忠振, 田修波, 潘 锋, Ricky K.Y Fu, 朱剑豪. 物理学报, 2014; 17: 175201)
[25] Vozniy O V, Duday D, Lejars A, Wirtz T. Plasma Sources Sci Technol, 2011; 20: 06500801
[26] Vitelaru C, Lundin D, Stancu G D, Brenning N, Bretagne J, Minea T. Plasma Sources Sci Technol, 2012; 21: 025010
[27] Horwat D, Anders A. J Appl Phys, 2010; 108: 123306
[28] Anders A. Appl Phys Lett, 2008; 92: 201501
[29] Wiatrowski A, Posadowski W M, Radzimski Z J. J Phys: Conference Ser, 2008; 100: 062004
[30] Vetushka A, Ehiasarian A P. J Phys, 2008; 41D: 015204
[1] 吴厚朴,田修波,张新宇,巩春志. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2019, 55(3): 299-307.
[2] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[3] 李小婵, 柯培玲, 刘新才, 汪爱英. 复合高功率脉冲磁控溅射Ti的放电特性及薄膜制备*[J]. 金属学报, 2014, 50(7): 879-885.
[4] 王振玉, 徐胜, 张栋, 刘新才, 柯培玲, 汪爱英. N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响*[J]. 金属学报, 2014, 50(5): 540-546.