Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 754-758    
  论文 本期目录 | 过刊浏览 |
纳米晶Fe0.13(CoxNi1-x)0.87微细纤维的制备及磁各向异性
陈云;刘恒兴;孟献丰;沈湘黔
(江苏大学材料科学与工程学院; 镇江 212013)
PREPARATION AND MAGNETIC ANISOTROPY OF NANOCRYSTALLINE Fe0.13(CoxNi1-x)0.87FINE FIBERS
CHEN Yun; LIU Hengxing; MENG Xianfeng; SHEN Xiangqian
School of Materials Science and Engineering; Jiangsu University; Zhenjiang 212013
引用本文:

陈云 刘恒兴 孟献丰 沈湘黔. 纳米晶Fe0.13(CoxNi1-x)0.87微细纤维的制备及磁各向异性[J]. 金属学报, 2009, 45(6): 754-758.
, , , . PREPARATION AND MAGNETIC ANISOTROPY OF NANOCRYSTALLINE Fe0.13(CoxNi1-x)0.87FINE FIBERS[J]. Acta Metall Sin, 2009, 45(6): 754-758.

全文: PDF(4362 KB)  
摘要: 

以柠檬酸和金属盐为原料, 采用有机凝胶--热还原法制备了纳米晶Fe0.13(CoxNi1-x)0.87(x=0.20, 0.30, 0.50, 0.80) 微细纤维. 采用FTIR, XRD和SEM等对纤维前驱体和热还原产物的结构、物相和形貌进行了分析; 采用振动样品磁强计 (VSM) 对纤维的磁性进行了 测试. 结果表明: 纤维直径分布在0.3---2 μm之间, 表面光滑, 长径比大, 组成纤维的晶粒尺寸约为34 nm. Fe0.13(CoxNi1-x)0.87微细纤维表现出明显的磁各向异性, 该性能主要受磁晶各向异性、形状各向异性和静磁相互作用等因素影响.纤维的易磁化方向为其轴向方向, 难磁化方向为径向方向, 所制备的Fe0.13(Co0.50Ni0.50)0.87纤维的剩磁比Mr/Ms(剩余与饱和磁化强度比)最大, 达到0.48.

关键词 有机凝胶--热还原法 纳米晶 Fe0.13(CoxNi1-x)0.87纤维磁各向异性    
Abstract

Small diameter ferromagnetic metal fibers (Fe, Ni, Co and their alloys fibers) with the anisotropic characteristics are attractive as fillers in polymer--matrix composites, advanced electromagnetic interference (EMI) shielding and wide--band microwave absorbing materials. Because lectromagnetic radiations with high frequencies only penetrate the near surface region of an electrical conductor, the composite material containing metal fibers with a small diameter is more effective than that with a large diameter. The filler of magnetic metal fibers with a diameter of 1 μm or less is therefore required technologically. Although iron fine fibers have been produced and used in several technological fields owing to a low cost, these iron fibers with a high specific surface area are generally not chemically stable due to easily oxidizing in an ambient atmosphere, which lowers their performance. The alloying can improve the anti--oxidation properties of ferromagnetic metal fibers and enhance their magnetic characteristics. In the present work, the nanocrystalline Fe0.13(CoxNi1-x)0.87(x=0.20, 0.30, 0.50, 0.80) fine fibers were prepared by the organic--gel thermal reduction process using citric acid and metal salts as the raw materials. The structure and morphology of the gel precursors and the fibers derived from these gel precursors in the thermal reduction process were characterized by FTIR, XRD and SEM. The magnetic properties for as--prepared alloy fibers were examined using vibrating sample magnetometer (VSM). The diameters of alloy fibers are in the range of 0.3 to 2 μm and these consist of grains with the size of about 34 nm. The experimental data show that the aligned nanocrystalline Fe0.13(CoxNi1-x)0.87 fibers exhibit an obvious magnetic anisotropy. This magnetic anisotropy is mainly effected by the magnetocrystalline anisotropy, shape anisotropy and magnetostatic interaction. The magnetizing ease axis for the nanocrystalline fiber is parallel to the fiber axis whilst the hard axis is perpendicular to the fiber axis. The nanocrystalline Fe0.13(Co0.50Ni0.50)0.87 fibers have a very high remanence ratio of 0.48.

收稿日期: 2008-11-18     
ZTFLH: 

TB333

 
基金资助:

国家自然科学基金项目50474038和50674048, 中国博士后基金项目20080431069及江苏省无机及复合新材料重点实验室开放基金项目wjqfhxcl200602资助

作者简介: 陈云, 男, 1982年生, 硕士生

[1] Tong G X, Guan J G, Fan X A, Wang W, Song F H. Chin J Inorg Chem, 2008; 24: 270
(童国秀, 官建国, 樊希安, 王维, 宋发辉. 无机化学学报, 2008; 24: 270)
[2] Li X L, Jia H S. J Mater Eng, 2007; (3): 14
(李小莉, 贾虎生. 材料工程, 2007; (3): 14)
[3] Yu J Y, Zhu J, Zhou D, Qian J G, Cai B C, Zhao X L. J Fun Mater, 2000; 31: 481
(余晋岳, 朱军, 周 狄, 钱建国, 蔡炳初, 赵小林. 功能材料, 2000; 31: 481)
[4] Wu H, Zhang R, Liu X X, Lin D D, Pan W. Chem Mater, 2007; 19: 3506
[5] Hu H N, Chen H Y, Yu S Y, Chen J L, Wu G H, Meng F B, Qu J P, Li Y X, Zhu H, Xiao Q. J Magn Magn Mater, 2005; 295: 257
[6] Wu M Z, He H H, Zhao Z S, Yao X. Appl Phys, 2000; 33: 2398
[7] Zhao Z S, Wu M Z, He H H. J Huazhong Univ Sci & Technol, 1998; 26(7): 74
(赵振声, 吴明忠, 何华辉. 华中理工大学学报, 1998; 26(7): 74)
[8] Li X C, Gong R Z, Nie Y, Zhao Z S, He H H. Mater Chem Phys, 2005; 94: 408
[9] Shen X Q, Jing M X, Wang T P, Cao K. Rare Met Mater Eng, 2006; 35: 945
(沈湘黔, 景茂祥, 王涛平, 曹凯. 稀有金属材料科学与工程, 2006; 35: 945)
[10] Shen X Q, Cao K, Zhou J X. Nonferrous Met Soc China, 2006; 16: 1003
[11] Cao K, Shen X Q, Jing M X, Zhang C Y. J Mater Sci Eng, 2006; 24: 174
(曹凯, 沈湘黔, 景茂祥, 张春野. 材料科学与工程, 2006; 24: 174)
[12] Strathmann T J, Myneni S B. Geochim Cosmochim Acta, 2004; 68: 3441
[13] Deacon G B, Phillips R J. Coord Chem Rev, 1980; 33: 227
[14] Yoo Y K, Xue Q Z, Chu Y S, Xu S F, Ude H G, Lee H C, Stein W G, Xiang X D. Intermetallics, 2006; 14: 241
[15] Ferr´e R, Ounadjela K, George J M, Piraux L, Dubois S. Phys Rev, 1997; 56B: 14066
[16] Ounadjela K, Ferr´e R, Louail L, George J M, Maurice J L, Piraux L, Dubois S. Appl Phys, 1997; 81: 5455
[17] Jiang H B, Gu F, Li C Z. Chin J Proc Eng, 2008; 8: 384
(姜海波, 顾峰, 李春忠. 过程工程学报, 2008; 8: 384)
[18] Xiao J J, Sun C, Xue D S, Li F S. Acta Phys Sin, 2001; 50: 1605
(肖君军, 孙超, 薛德胜, 李发伸. 物理学报, 2001; 50: 1605)
[19] Zhao Y M, Dunnill C W, Zhu Y Q, Gregory D H, Kockenberger W, Li Y H, Hu W B, Ahmad I, McCartney D G. Chem Mater, 2007; 19: 916
[20] Bozorth R M. Ferromagnetic Materials. New York: IEEE Press, 1993: 664
[21] Du Y W. Prog Phys, 1993; 13: 255
(都有为. 物理学进展, 1993; 13: 255)

[1] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[2] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[3] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[4] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[5] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[6] 马晓琴, 詹清峰, 李金财, 刘青芳, 王保敏, 李润伟. 倾斜溅射对CoFeB薄膜条纹磁畴结构与磁各向异性的影响[J]. 金属学报, 2018, 54(9): 1281-1288.
[7] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[8] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[9] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[10] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.
[11] 李维丹,谭晓华,任科智,刘洁,徐晖. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*[J]. 金属学报, 2016, 52(5): 561-566.
[12] 杜娇娇,李国建,王强,马永会,王慧敏,李萌萌. 强磁场下不同晶粒尺寸Fe薄膜生长模式演变及其对磁性能的影响*[J]. 金属学报, 2015, 51(7): 799-806.
[13] 罗新民, 王翔, 陈康敏, 鲁金忠, 王兰, 张永康. 激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性[J]. 金属学报, 2015, 51(1): 57-66.
[14] 李嘉宁, 巩水利, 王娟, 单飞虎, 李怀学, 吴冰. Cu对TA15-2钛合金表面Stellite 12基激光合金化涂层组织结构及耐磨性的影响*[J]. 金属学报, 2014, 50(5): 547-554.
[15] 魏宇杰. 纳米金属材料的界面力学行为研究*[J]. 金属学报, 2014, 50(2): 183-190.