Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1285-1293    DOI: 10.11900/0412.1961.2014.00189
  本期目录 | 过刊浏览 |
核能系统压力容器辐照脆化机制及其影响因素
李正操(), 陈良
清华大学材料学院先进材料教育部重点实验室, 北京 100084
IRRADIATION EMBRITTLEMENT MECHANISMS AND RELEVANT INFLUENCE FACTORS OF NUCLEAR REACTOR PRESSURE VESSEL STEELS
LI Zhengcao(), CHEN Liang
Advanced Materials Laboratory, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
引用本文:

李正操, 陈良. 核能系统压力容器辐照脆化机制及其影响因素[J]. 金属学报, 2014, 50(11): 1285-1293.
Zhengcao LI, Liang CHEN. IRRADIATION EMBRITTLEMENT MECHANISMS AND RELEVANT INFLUENCE FACTORS OF NUCLEAR REACTOR PRESSURE VESSEL STEELS[J]. Acta Metall Sin, 2014, 50(11): 1285-1293.

全文: PDF(2517 KB)   HTML
摘要: 

核反应堆压力容器作为核电站不可更换的关键性设备, 其设备完整性对核电站的安全运行起着至关重要的作用. 在辐照条件下, 反应堆压力容器钢中会形成一系列微结构缺陷, 包括溶质沉淀、基体损伤和脆性元素的晶界偏聚等, 导致材料的韧脆性转变温度升高, 产生辐照脆化效应. 而压力容器钢的成分和辐照条件决定了各种微结构对辐照脆化的贡献大小. 本文主要针对核能系统压力容器辐照脆化机制及其影响因素进行了综述, 总结讨论了这些微结构的形成机制及溶质元素、辐照通量和辐照后退火对这些微结构和材料机械性能的影响, 并指出了存在的问题和未来的研究方向.

关键词 反应堆压力容器辐照脆化溶质沉淀基体损伤晶界偏聚    
Abstract

Nuclear reactor pressure vessel is the irreplaceable component of the nuclear power plant and its integrity is one of the key issues of any nuclear power plant for long term operations. Various nanofeatures, including solute clusters, matrix damage and grain boundary segregation formed in reactor pressure vessel steels in the face of neutron irradiation. These ultrafine microstructural features lead to an increase in the ductile brittle transition temperature as is the measure used to describe the irradiation embrittlement. The balance of features depends on the composition of the reactor pressure vessel steels and the irradiation conditions. This paper reviews the current phenomenological knowledge and understanding of the basic mechanisms and relevant influence factors for irradiation embrittlement of nuclear reactor pressure vessel steels. To be specific, the formation and evolution processes of the embrittling features are presented. Also, the influences of material variables, such as copper, nickel and manganese contents on irradiation embrittlement and those of irradiation variables, such as neutron flux and post irradiation annealing are summarized. In addition, fundamental research issues that remain to be addressed are briefly pointed out.

Key wordsreactor pressure vessel    irradiation embrittlement    solute precipitation    matrix damage    grain boundary segregation
收稿日期: 2014-06-26     
ZTFLH:  TL341  
基金资助:* 国家科技重大专项资助项目2011ZX06004-002
作者简介: null

李正操, 男, 1975年生, 副教授

图1  压水堆核电站Doel-1和Doel-2辐照监督试样溶质原子分布图[22]
图2  Fe-1.1Mn-0.7Ni (原子分数, %)合金在中子辐照剂量为0.2 dpa时的三维原子探针(APT)实验结果[54]
图3  Fe-1.2Mn-0.7Ni (原子分数, %)合金经过0.024 dpa中子辐照所产生的沉淀物的成分分布[52]
图4  经过0.2 dpa中子辐照的纯Fe的TEM像[54]
[1] Lambrecht M, Almazouzi A. J Phys: Conf Ser, 2011; 265: 012009
[2] Chai M S, Lai W S, Li Z C, Feng W. Acta Metall Sin (Eng Lett), 2012; 25: 29
[3] Odette G R, Lucas G E. Radiat Eff Defect Solids, 1998; 144: 189
[4] Miller M K, Russell K F. J Nucl Mater, 2007; 371: 145
[5] Hu Z, Li Z C, Zhou Z, Shi C Q, Schut H, Pappas K. J Phys: Conf Ser, 2014; 505: 012014
[6] Vincent E, Becquart C S, Pareige C, Pareige P, Domain C. J Nucl Mater, 2008; 373: 387
[7] Zhang Q, Li Z C, Lin C, Liu B X, Ma E. J Appl Phys, 2000; 87: 4147
[8] Phythian W J, English C A. J Nucl Mater, 1993; 205: 162
[9] Odette G R. J Nucl Mater, 1994; 212: 45
[10] Odette G R, Lucas G E. JOM, 2001; 53(7): 18
[11] Lv Z. Acta Metall Sin, 2011; 47: 777
[11] (吕 铮. 金属学报, 2011; 47: 777)
[12] Yeli G M, Li Z C, Yu X Y, Zhang Z J. Rare Met, doi: 10.1007/s12598-013-0118-x
[13] Chaouadi R, Gérard R. J Nucl Mater, 2005; 345: 65
[14] Kameda J, Bevolo A J. Acta Metall, 1989; 37: 3283
[15] Lu Z, Faulkner R G, Flewitt P E J. Mater Sci Eng, 2006; A437: 306
[16] Glade S C, Wirth B D, Odette G R, Asoka-Kumar P. J Nucl Mater, 2006; 351: 197
[17] Fukuya K. J Nucl Sci Technol, 2013; 50: 213
[18] Buswell J T, Phythian W J, McElroy R J, Dumbill S, Ray P H N, Mace J, Sinclair R N. J Nucl Mater, 1995; 225: 196
[19] Liu C L, Odette G R, Wirth B D, Lucas G E. Mater Sci Eng, 1997; A238: 202
[20] Odette G R, Wirth B D. J Nucl Mater, 1997; 251: 157
[21] Miller M K, Chernobaeva A A, Shtrombakh Y I, Russell K F, Nanstad R K, Erak D Y, Zabusov O O. J Nucl Mater, 2009; 385: 615
[22] Toyama T, Nagai Y, Tang Z L, Hasegawa M, Almazouzi A, van Walle E, Gerard R. Acta Mater, 2007; 55: 6852
[23] Othen P J, Jenkins M L, Smith G D W. Philos Mag, 1994; 70A: 1
[24] Charleux M, Livet F, Bley F, Louchet F, Brechet Y. Philos Mag, 1996; 73A: 883
[25] Monzen R, Iguchi M, Jenkins M L. Philos Mag Lett, 2000; 80(3): 137
[26] Nicol A C, Jenkins M L, Kirk M A. Mater Res Soc Symp Proc, 1999; 540: 409
[27] Buswell J T, Bischler P J E, Fenton S T, Ward A E, Phythian W J. J Nucl Mater, 1993; 205: 198
[28] Arokiam A C, Barashev A V, Bacon D J, Osetsky Y N. Philos Mag, 2007; 87: 925
[29] Grosse M, Denner V, Bohmert J, Mathon M H. J Nucl Mater, 2000; 277: 280
[30] Ulbricht A, Boehmert J. Physica, 2004; 350B: E483
[31] Goodman S R, Brenner S S, Low J R. Metall Trans, 1973; 4: 2371
[32] Miller M K, Wirth B D, Odette G R. Mater Sci Eng, 2003; A353: 133
[33] Zhang C, Enomoto M, Yamashita T, Sano N. Metall Mater Trans, 2004; 35A: 1263
[34] Lozano-Perez S, Titchmarsh J M, Jenkins M L. Ultramicroscopy, 2006; 106(2): 75
[35] Sumiyama K, Yoshitake Y, Nakamura Y. Acta Metall, 1985; 33: 1785
[36] Wirth B D. PhD Dissertation, University of California Santa Barbara, 1995
[37] Fine M E, Liu J Z, Asta M D. Mater Sci Eng, 2007; A463: 271
[38] Miller M K, Hetherington M G. Surf Sci, 1991; 246: 442
[39] Vurpillot F, Bostel A, Blavette D. Appl Phys Lett, 2000; 76: 3127
[40] Blavette D, Vurpillot F, Pareige P, Menand A. Ultramicroscopy, 2001; 89: 145
[41] Morley A, Sha G, Hirosawa S, Cerezo A, Smith G D W. Ultramicroscopy, 2009; 109: 535
[42] Arokiam A C, Barashev A V, Bacon D J, Osetsky Y N. Philos Mag Lett, 2005; 85: 491
[43] Odette G R, Yamamoto T, Wirth B D. In: Ghoniem N M ed., Proc 2nd Int Conf on Multiscale Materials Modeling, University of California, 2004: 355
[44] Bergner F, Ulbricht A, Viehrig H W. Philos Mag Lett, 2009; 89: 795
[45] Wagner A, Ulbricht A, Bergner F, Altstadt E. Nucl Instrum Methods Phys Res, 2012; 280B: 98
[46] Lucas G E. J Nucl Mater, 2010; 407: 59
[47] Auger P, Pareige P, Akamatsu M, Blavette D. J Nucl Mater, 1995; 225: 225
[48] Odette G R, Nanstad R K. JOM, 2009; 61(7): 17
[49] Bonny G, Terentyev D, Bakaev A, Zhurkin E E, Hou M, Van Neck D, Malerba L. J Nucl Mater, 2013; 442: 282
[50] Radiguet B, Pareige P, Barbu A. Nucl Instrum Methods Phys Res, 2009; 267B: 1496
[51] Meslin E, Radiguet B, Pareige P, Toffolon C, Barbu A. Exp Mech, 2011; 51: 1453
[52] Ngayam-Happy R, Becquart C S, Domain C, Malerba L. J Nucl Mater, 2012; 426: 198
[53] Meslin E, Radiguet B, Pareige P, Barbu A. J Nucl Mater, 2010; 399: 137
[54] Meslin E, Lambrecht M, Hernandez-Mayoral M, Bergner F, Malerba L, Pareige P, Radiguet B, Barbu A, Gomez-Briceno D, Ulbricht A, Almazouzi A. J Nucl Mater, 2010; 406: 73
[55] Miller M K, Sokolov M A, Nanstad R K, Russell K F. J Nucl Mater, 2006; 351: 187
[56] Meslin E, Radiguet B, Loyer-Prost M. Acta Mater, 2013; 61: 6246
[57] Vincent E, Becquart C S, Domain C. J Nucl Mater, 2006; 359: 227
[58] Olsson P, Klaver T P C, Domain C. Phys Rev, 2010; 81B: 054102
[59] Hyde J M, Burke M G, Boothby R M, English C A. Ultramicroscopy, 2009; 109: 510
[60] Miller M K, Russell K F, Kocik J, Keilova E. J Nucl Mater, 2000; 282: 83
[61] Williams T J, Ellis D, Swan D I, McGuire J, Walley S P, English C A, Venables J H, de la cour Ray P H N. Proc 2nd Int Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Monterey: ANS, 1986: 323
[62] Williams T J, Burch P R, English C A, de la cour Ray P H N. Proc 3rd Int Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, New York: ASME, 1988: 121
[63] Malerba L. J Nucl Mater, 2006; 351: 28
[64] Terentyev D, Lagerstedt C, Olsson P, Nordlund K, Wallenius J, Becquart C, Malerba L. J Nucl Mater, 2006; 351: 65
[65] Fujii K, Fukuya K. J Nucl Mater, 2005; 336: 323
[66] Robertson I M, Jenkins M L, English C A. J Nucl Mater, 1982; 108: 209
[67] Horton L L, Bentley J, Farrell K. J Nucl Mater, 1982; 108: 222
[68] Hoelzer D T, Ebrahimi F. Mater Res Soc Symp Proc, 1994; 373: 57
[69] Nicol A C, Jenkins M L, Kirk M A. Mater Res Soc Symp Proc, 2000; 50: Paper R1.3
[70] Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H, Hasegawa M. Phys Rev, 2003; 67B: 224202
[71] Lambrecht M, Almazouzi A. J Nucl Mater, 2009; 385: 334
[72] Soisson F, Fu C C. Phys Rev, 2007; 76B: 214102
[73] Jourdan T, Soisson F, Clouet E, Barbu A. Acta Mater, 2010; 58: 3400
[74] Pareige P, Radiguet B, Barbu A. J Nucl Mater, 2006; 352: 75
[75] Lambrecht M, Malerba L, Almazouzi A. J Nucl Mater, 2008; 378: 282
[76] Yabuuchi K, Saito M, Kasada R, Kimura A. J Nucl Mater, 2011; 414: 498
[77] Fujii K, Ohkubo T, Fukuya K. J Nucl Mater, 2011; 417: 949
[78] Glade S C, Wirth B D, Odette G R, Asoka-Kumar P, Sterne P A, Howell R H. Philos Mag, 2005; 85: 629
[79] Nakata H, Fujii K, Fukuya K, Kasada R, Kimura A. J Nucl Sci Technol, 2006; 43: 785
[80] Bischler P J E, Wild R K. ASTM STP, 1996; 1270: 260
[81] McElroy R J, English C A, Foreman A J, Gage G, Hyde J M, Ray P H N, Vatter I A. ASTM STP, 1999; 1325: 296
[82] Kimura A, Shibata M, Kasada R, Fujii K, Fukuya K, Nakata H. ASTM STP, 2006; 1475: 212
[83] Nishiyama Y, Yamagushi M, Onizawa K, Iwase A, Matsuzawa H. J ASTM Int, 2009; 6: JAI10959
[84] Jones R B, Cowan J R, Corcoran R C, Walmsley J C. ASTM STP, 2000; 1366: 473
[85] Nikolaeva A V, Nikolaev Y A, Kryukov A M. J Nucl Mater, 1995; 218: 85
[86] Faulkner R G, Song S, Flewitt P E J, Victoria M, Marmy P. J Nucl Mater, 1998; 255: 189
[87] Lu Z, Faulkner R, Jones R, Flewitt P. ASTM STP, 2006; 1475: 180
[88] Nishiyama Y, Onizawa K, Suzuki M, Anderegg J W, Nagai Y, Toyama T, Hasegawa M, Kameda J. Acta Mater, 2008; 56: 4510
[89] Faulkner R G, Jones R B, Lu Z, Flewitt P E J. Philos Mag, 2005; 85: 2065
[90] English C A, Ortner S R, Gage G, Server W L, Rosinski S T. ASTM STP, 2001; 1405: 151
[91] Gurovich B A, Kuleshova E A, Shtrombakh Y I, Zabusov O O, Krasikov E A. J Nucl Mater, 2000; 279: 259
[92] Miller M K. J Mater Sci, 2006; 41: 7808
[93] Miller M K, Babu S S, Sokolov M A, Nanstad R K, Iskander S K. Mater Sci Eng, 2002; A327: 76
[94] Miller M K, Hetherington M G, Burke M G. Metall Trans, 1989; 20A: 2651
[95] Li Z C, Abe H, Sekimura N. J Nucl Mater, 2007; 362: 87
[96] Russell K C, Brown L M. Acta Metall, 1972; 20: 969
[97] Deschamps A, Militzer M, Poole W J. ISIJ Int, 2001; 41: 196
[98] Ma E, Atzmon M, Pinkerton F E. J Appl Phys, 1993; 74: 955
[99] Fine M E, Isheim D. Scr Mater, 2005; 53: 115
[100] Bacon D J, Osetsky Y N. Philos Mag, 2009; 89: 3333
[101] Harry T, Bacon D J. Acta Mater, 2002; 50: 209
[102] Shtrombakh Y I, Gurovich B A, Kuleshova E A, Maltsev D A, Fedotova S V, Chernobaeva A A. J Nucl Mater, 2014; 452: 348
[103] Cerezo A, Hirosawa S, Rozdilsky I, Smith G. Philos Trans R Soc London, 2003; 361A: 463
[104] Kryukov A M, Nikolaev Y A, Nikolaeva A V. Nucl Eng Des, 1998; 186: 353
[105] Bergner F, Lambrecht M, Ulbricht A, Almazouzi A. J Nucl Mater, 2010; 399: 129
[106] Hernández-Mayoral M, Gómez-Briceño D. J Nucl Mater, 2010; 399: 146
[107] Chaouadi R, Gerard R. J Nucl Mater, 2011; 418: 137
[108] Fukuya K, Ohno K, Nakata H, Dumbill S, Hyde J M. J Nucl Mater, 2003; 312: 163
[109] Fujii K, Fukuya K, Hojo T. J Nucl Sci Technol, 2013; 50: 160
[110] Eason E D, Wright J E, Nelson E E, Odette G R, Mader E V. Nucl Eng Des, 1998; 179: 257
[111] Miller M K, Nanstad R K, Sokolov M A, Russell K F. J Nucl Mater, 2006; 351: 216
[112] Miller M K, Russell K F. J Nucl Mater, 1997; 250: 223
[113] Ulbricht A, Bergner F, Boehmert J, Valo M, Mathon M H, Heinemann A. Philos Mag, 2007; 87: 1855
[114] Bohmert J, Viehrig H W, Ulbricht A. J Nucl Mater, 2001; 297: 251
[115] Ulbricht A, Bergner F, Dewhurst C D, Heinemann A. J Nucl Mater, 2006; 353: 27
[116] Ulbricht A, Altstadt E, Bergner F, Viehrig H W, Keiderling U. J Nucl Mater, 2011; 416: 111
[117] Wagner A, Bergner F, Ulbricht A, Dewhurst C D. J Nucl Mater, 2013; 441: 487
[118] Wang W P, Li Z C, Zhang Z J, Zhang C H. Nucl Instrum Methods Phys Res, 2014; 334B: 96
[119] Bergner F, Ulbricht A, Lindner P, Keiderling U, Malerba L. J Nucl Mater, 2014; 454: 22
[120] Liu J, Yao H J, Sun Y M, Duan J L, Hou M D, Mo D, Wang Z G, Jin Y F, Abe H, Li Z C, Sekimura N. Nucl Instrum Methods Phys Res, 2006; 245: 126
[121] Li Z C, Yu X Y, Miao W, Zhang Z J. Rare Met, 2011; 30: 258
[122] Latourte F, Salez T, Guery A, Rupin N, Mahe M. J Nucl Mater, 2014; 454: 373
[123] Wells P B, Yamamoto T, Miller B, Milot T, Cole J, Wu Y, Odette G R. Acta Mater, 2014; 80: 205
[1] 张天慈, 王海涛, 李正操, SCHUT Henk, 张征明, 贺铭, 孙玉良. 国产RPV钢铁离子辐照脆化行为的正电子湮灭研究[J]. 金属学报, 2018, 54(4): 512-518.
[2] 王凯,刘浏,徐庭栋,董学东. 2.25Cr1Mo合金高温低塑性的非平衡偏聚机理研究[J]. 金属学报, 2017, 53(3): 345-350.
[3] 吕铮. 核反应堆压力容器的辐照脆化与延寿评估[J]. 金属学报, 2011, 47(7): 777-783.
[4] 周健; 郭建亭 . 磷对NiAl合金的软化作用[J]. 金属学报, 2004, 40(1): 67-71 .
[5] 王文东;章三红;贺信莱. 硼在铁基及镍基合金中的扩散[J]. 金属学报, 1995, 31(2): 56-63.
[6] 杜国维;王政;张德志;肖纪美. Ni_3Al-Cr-Zr-B-Mg合金的高温晶界脆性[J]. 金属学报, 1994, 30(9): 394-398.
[7] 柳襄怀;江炳尧;王曦;孙坚;邹世昌. Mg的晶界偏聚效应及其对Ni_3Al(0.1B)抗腐蚀性能的影响[J]. 金属学报, 1993, 29(5): 87-91.
[8] 李承基;高德春;曹凤豫;陆丰. Ca对60CrMnCuV钢中硫的晶界偏聚及冲击韧性的影响[J]. 金属学报, 1993, 29(12): 8-13.
[9] 赵宇;何忠治;翁宇庆;吴宝榕. 微量Sn在高磁感取向硅钢中的晶界偏聚[J]. 金属学报, 1992, 28(8): 1-6.
[10] 陆丰;曹凤豫;李承基;张永祥;陈永刚. Ca在58CrV钢中的合金化行为[J]. 金属学报, 1992, 28(6): 7-12.
[11] 李树尘;刘世楷. Fe-C-Si-Mn晶界多元偏聚研究与热力学分析[J]. 金属学报, 1991, 27(3): 101-105.
[12] 张东彬;吴承建;杨让. Fe-P与Fe-P-Ce合金中的晶界磷偏聚及其对脆性的影响[J]. 金属学报, 1991, 27(2): 33-36.
[13] 李光福;吴忍畊. 高温淬火改善超高强度钢应力腐蚀断裂抗力的研究[J]. 金属学报, 1989, 25(6): 70-73.
[14] 张东彬;吴承建. Ce在α-Fe晶界的偏聚及其对磷的晶界平衡偏聚的影响[J]. 金属学报, 1988, 24(2): 100-105.