Please wait a minute...
金属学报  2007, Vol. 43 Issue (3): 281-285     
  论文 本期目录 | 过刊浏览 |
(Fe1-xCox)78.4Nb2.6Si9B9Cu1纳米晶软磁合金的结构与高频磁性
马晓华 王治 王光建
天津大学理学院
Microstructure and high-frequency magnetic properties of nanocrystalline (Fe1-xCox)78.4Nb2.6Si9B9Cu1 soft magnetic alloys
MA Xiaohua; WANG Zhi;WANG Guangjian
School of Science; Tianjin University; Tianjin 300072
引用本文:

马晓华; 王治; 王光建 . (Fe1-xCox)78.4Nb2.6Si9B9Cu1纳米晶软磁合金的结构与高频磁性[J]. 金属学报, 2007, 43(3): 281-285 .
, , . Microstructure and high-frequency magnetic properties of nanocrystalline (Fe1-xCox)78.4Nb2.6Si9B9Cu1 soft magnetic alloys[J]. Acta Metall Sin, 2007, 43(3): 281-285 .

全文: PDF(762 KB)  
摘要: 研究了(Fe1-xCox)78.4Nb2.6Si9B9Cu1(x=0.35、0.5、0.65)合金在真空条件下(1×10-3Pa)490℃等温退火30min后的结构与高频磁性。XRD分析表明,非晶 (Fe1-xCox)78.4Nb2.6Si9B9Cu1合金490℃退火后析出晶粒尺寸约15nm的α-FeCo(Si)软磁晶体相,随Co含量的增加,α-FeCo(Si)晶格常数变小,晶粒尺寸略有增大。利用Pseudo-Voigt2函数模拟了晶体相体积百分数。由晶格常数及晶体相体积百分数估算了剩余非晶相的成份。用阻抗分析仪测量了纳米晶(Fe1-xCox)78.4Nb2.6Si9B9Cu1合金在10kHz~10MHz范围的磁谱曲线。结果表明,随Co含量的增加,合金的初始磁导率降低,而共振频率明显提高,用畴壁运动方程及畴壁钉扎理论解释了Co含量的变化对纳米晶合金高频磁性的影响规律。
关键词 纳米晶晶体相非晶相复数磁导率初始磁导    
Abstract:Microstructure and high-frequency magnetic properties were investigated for soft magnetic nanocrystalline (Fe1-xCox78.4)Nb2.6Si9B9Cu1 (x=0.35, 0.5, 0.65) alloys annealed at 490℃for 0.5 hour under vacuum atmosphere (1×10-3Pa). XRD analyzing showed that the α-FeCo(Si) crystallites of about 15 nm were from the amorphous matrix by annealing the samples. With the increasing of Co content, the lattice parameter of α-FeCo(Si) crystallites decreased and the average grain size increased appreciably. Pseudo-Voigt2 function was used to fit the XRD patterns in order to estimate the crystalline volume fraction. The mean composition of the residual amorphous matrix was estimated according to lattice parameter and crystalline volume fraction. Permeability-frequency spectra from 10 kHz to 10 MHz was studied by using an impedance analyzer for nanocrystalline (Fe1-xCox78.4)Nb2.6Si9B9Cu1 alloys. It was shown that with the increasing of Co content, the initial permeability decreased and resonance frequency remarkably increased. The equation of domain wall motion and domain wall pinning mechanism were used to analyze how the high-frequency magnetic property was determined by the Co content for nanocrystalline (Fe1-xCox78.4)Nb2.6Si9B9Cu1 alloys.
Key wordsnanocrystalline    crystalline phase    amorphous phase
收稿日期: 2006-06-29     
ZTFLH:  TG146.2  
[1]Yoshizawa Y,Oguma S,Yamauchki K.J Appl Phys,1988; 64:6044
[2]Yoshizawa Y,Yamauchi K,Yamane T,Sugihara H.J Appl Phys,1988;64:6047
[3](?)lawska-Waniewska A,Nowicki P,Lachowicz H K,Gorria P,Barandiar(?)n J M,Hernando A.Phys Rev,1994;50 B: 6465
[4]Hernando A,V(?)zquez M,Kulik T,Prados C.Phys Rev, 1995;51B:3581
[5]Zhang X Y,Zhang F X,Zhang J W,Yu W,Zhang M, Zhao J H,Liu R P,Xu Y F,Wang W K.J Appl Phys, 1998;84:1918
[6]Zhong W R,Shao Y Z,Lin G M,Hu X D.Acta Metall Sin,2004;40:795 (钟伟荣,邵元智,林光明,胡西多.金属学报,2004;40:795)
[7]Herzer G.J Magn Magn Mater,2005;294:99
[8]Herzer G.IEEE Trans Magn,1989;25:3327
[9]Suzuki K,Makino A,Inoue A,Masumoto T.J Appl Phys, 1991;70:6232
[10]M(?)ller M,Grahl H,Mattern N,Kuhn U,Schnell B.J Magn Magn Mater,1996;160:284
[11]Fujimori H,Morita H,Obi Y,Ohta S.Amorphous Mag- netismⅡ.New York:Plenum Press,1977:393
[12]Ohnuma M,Ping D H,Abe T,Onodera H,Hono K, Yoshizawa Y.J Appl Phys,2003;93:9186
[13]Yoshizawa Y,Fujii S,Ping D H,Ohnuma M,Hono K. Mater Sci Eng,2004;A375/377:207
[14]G(?)mez-Poto C,Marin P,Pascual L,Hernando A,V(?)zquez M.Phys Rev,2001;65B:024433
[15]Liang X B,Ferenc J,Kulik T,Slawska W A,Xu B S.J Magn Magn Mater,2004;91:284
[16]Allia P,Baricco M,Tiberto P,Vinai F.J Appl Phys,1993; 74:3137
[17]Niculescu V,Budnick J I,Hines W A,Raj K.Phys Rev, 1979;19B:452
[18]Niculescu V,Burch T J,Budick J I.J Magn Magn Mater, 1983;39:223
[19]Liang X B,Kulik T,Ferenc J,Kowalczyk M,Vlas(?)k G, Sun W S,Xu B S.Physics,2005;370B:151
[20]Liao S B.Ferrimagnetism(Vol.Ⅲ).Beijing:Science Press,1988:49 (寥绍彬.铁磁学(Ⅲ).北京:科学出版社.1988:49)
[21]Qin W,Zhang Y F,Du Y W,Xu F,Wu Y J,Zhao M,Ma F.J Magn Magn Mater,2004;270:174
[22]Mao X Y,Gao W L,Tang J C,Xu F,Du Y W.J Magn Magn Mater,2004;271:286w
[1] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[2] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[3] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[4] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[5] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[6] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[7] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[8] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[9] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.
[10] 李维丹,谭晓华,任科智,刘洁,徐晖. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*[J]. 金属学报, 2016, 52(5): 561-566.
[11] 杜娇娇,李国建,王强,马永会,王慧敏,李萌萌. 强磁场下不同晶粒尺寸Fe薄膜生长模式演变及其对磁性能的影响*[J]. 金属学报, 2015, 51(7): 799-806.
[12] 卢艳丽,卢广明,胡婷婷,杨涛,陈铮. 晶体相场法研究Kirkendall效应诱发的相界空洞的形成和演变*[J]. 金属学报, 2015, 51(7): 866-872.
[13] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[14] 罗新民, 王翔, 陈康敏, 鲁金忠, 王兰, 张永康. 激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性[J]. 金属学报, 2015, 51(1): 57-66.
[15] 高英俊, 周文权, 邓芊芊, 罗志荣, 林葵, 黄创高. 晶体相场方法模拟高温应变作用的预熔化晶界的位错运动*[J]. 金属学报, 2014, 50(7): 886-896.