Please wait a minute...
金属学报  2007, Vol. 42 Issue (1): 82-86     
  论文 本期目录 | 过刊浏览 |
Cu-Zr-Ti-Ni-Mo 块体非晶合金的腐蚀行为及耐蚀机理研究
刘兵;柳林;陈振宇
华中科技大学材料学院博03级
Corrosion Behavior and Anticorrosion Mechanism of Cu-Zr-Ti-Ni-Mo Bulk Metallic Glass
Liu Bing;;
华中科技大学材料学院博03级
引用本文:

刘兵; 柳林; 陈振宇 . Cu-Zr-Ti-Ni-Mo 块体非晶合金的腐蚀行为及耐蚀机理研究[J]. 金属学报, 2007, 42(1): 82-86 .
, , . Corrosion Behavior and Anticorrosion Mechanism of Cu-Zr-Ti-Ni-Mo Bulk Metallic Glass[J]. Acta Metall Sin, 2007, 42(1): 82-86 .

全文: PDF(239 KB)  
摘要: 在室温下,采用动电位极化和交流阻抗谱技术(EIS)研究了(Cu47Zr11Ti34Ni8)100-x Mox(x=0, 2;原子百分数)块体非晶合金在1 mol/L H2SO4溶液中的电化学行为。结果表明,非晶合金中添加了2 at%Mo后,材料的钝化膜破裂电位(Eb)显著上升,而致钝化电位(E0) 与维钝电流密度(ip)则明显减小。这主要是由于在稳定的钝化区内,微量Mo的添加增加了基体合金中的“氧空位”和表面活性,抑制了阴离子空位在金属/表面膜(M/F)界面上形成,促使Zr、Ti元素在M/F界面上快速形成相应的氧化物,并增加了钝化层中氧化层的厚度和稳定性。根据该体系在电解质中的电化学反应,基于点缺陷模型(PDM)建立了简单的动力学模型。利用该模型,结合EIS数据,分析了微合金化提高Cu基块体非晶合金耐蚀性能的机理。
关键词 Cu基块体非晶合金微合金化耐腐蚀机理    
Abstract:(Cu47Zr11Ti34Ni8)100-xMox (x = 0, 2 at.%) bulk metallic glasses (BMGs) were produced by copper mould casting. The amorphous feature of the samples was characterized by X-ray diffraction (XRD). The corrosion resistance and corrosion mechanism of the two BMGs in 1 mol/L H2SO4 solution open to air were studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. It is found that the BMG with 2 at.% Mo exhibited a superior corrosion resistance over the base alloy, as indicated by a considerable increase in pitting potential (Eb) and significant decrease in passive potential (E0) and passive current density (ip) for the Mo-bearing BMG. EIS results revealed that the micro-addition of Mo increased the surface activity and promoted the generation of positive defects (i.e., oxygen vacancies), but suppressed the formation of negative defects at the interfaces between metal/passive film (M/F). As a result, the addition of Mo could speed up the formation of the passive film of Zr-, and Ti-oxides, and stabilize simultaneously the oxides film. Base on point defect model (PDM), a qualitatively kinetic model is established to explain tentatively the effect of micro-additionn of Mo on the improvement of the corrosion resistance of the Cu-based bulk metallic glasses.
Key wordsCu-based bulk metallic glasses    Micro-addition    Mechanism of corrosion resistance    Passive film    Electr
收稿日期: 2006-03-29     
ZTFLH:  TG139.8  
[1] Lin X H,Johnson W L.J Appl Phys,1995;78:6514
[2] Yim H C,Busch R,Johnson W L.J Appl Phys,1998;83: 7993
[3] Glade S C,Loffler J F,Bossuyt S,Johnson W L.J Appl Phys,2001;89:1573
[4] Inoue A,Zhang W,Zhang T,Kurosaka K.Acta Mater, 2001; 49:2645
[5] Inoue A,Zhang W,Zhang T,Kurosaka K.J Non—Cryst Solids,2002;304:200
[6] Zhang T,Yamamoto T,Inoue A.Mater Trans,2002;43: 3222
[7] Inoue A,Zhang T,Kurosaka K,Zhang W.Mater Trans, 2001;42:1800
[8] Zhang W,Inoue A.Mater Trans,2004;45:1210
[9] Li C F,Saida J,Matsushida M,Inoue A.Scr Mater,2000; 42:923
[10] Zhang Q S,Zhang H F,Deng Y F,Ding B Z,Hu Z Q.Scr Mater,2003;49:273
[11] Yamamoto T,Qin C L,Zhang T,AsamiK,Inoue A.Mater Trans, 2003; 44:1147
[12] Asami K, Teramoto K.Corros Sci, 1979;18:151
[13] Hashimoto K,Asami K,Teramoto K. Corros Sci,1979; 19:3
[14] Qin C L,Asami K,Zhang T,Zhang W,Inoue A.Mater Trans, 2003; 44:1042
[15] Asami K,Qin C L,Zhang T,Inoue A. Mater Sci Eng, 2004;A375—377:235
[16] Asami K,Qin C L,Zhang T,Inoue A.Mater Sci Eng, 2004;A375-377:759
[17] Liu B,Liu L,Sun M,Qiu C L,Chen Q.Acta Metall Sin, 2005;4l:738 (刘兵,柳林,孙民,邱春雷,谌祺.金属学报,2005; 41:738)
[18] Liu B, Liu L. Mater Sci Eng, 2006;A415:286
[19] Liu L, Liu B. Electrochim Acta, 2006; 51:3724
[20] MacDonald J R.Impedance Spectroscopy Emphasizing Solid Materials and Systems.New York:Wiley, 1987
[21] Urquidi-Macdonald M, Macdonald D D.J Electrochem Soc, 1987;134:41
[22] Graham M J.Corros Sci, 1995; 37:1337
[23] Wegrelius L., Falkenberg F, Olefjord L J Electrochem Soc, 1999;146:1397
[24] Goetz R,Landolt D.Electrochim Acta,1984; 29:667
[25] Olefjord I, Brox B, Jelvestam U.J Electrochem Soc, 1985; 132:2854
[26] Fromhold A T J, Cook E L. J Appl Phys, 1967;38:1546
[27] Betova I,Bojinov M,Englund A,Fabricius G,Laitinen T, Makela K,Saario T,Sundholm G.Electrochim Aeta, 2001; 46:3627
[28] Habazaki H,Uozumi M,Konno H,Shimizu K,Nagata S, Asami K, Matsumoto K,Takayama K,Oda Y, Skeldon P, Thompson G E.Electrochim Acta, 2003; 48:3257
[29] Metikos-Hukovic M, Babic R, Paic L J Appl Electrochem. 2000; 30:617
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[3] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[4] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[5] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[6] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[7] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[8] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[9] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[10] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[11] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[12] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[13] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[14] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[15] 许立宁,朱金阳,王贝. Cr含量和pH值对低铬管线钢半钝化行为的影响[J]. 金属学报, 2017, 53(6): 677-683.