Please wait a minute...
金属学报  2006, Vol. 42 Issue (9): 998-1002     
  论文 本期目录 | 过刊浏览 |
搅拌摩擦焊中动态再结晶及硬度分布的数值模拟
张昭; 张洪武
大连理工大学工程力学系工业装备与结构分析国家重点实验室;大连 116024
NUMERICAL SIMULATION OF DYNAMIC RECRYSTALLIZATION AND HARDNESS DISTRIBUTION IN FRICTION STIR WELDING PROCESS
Zhang Zhao; Zhang Hongwu
大连理工大学工程力学系工业装备与结构分析国家重点实验室;大连 116024
引用本文:

张昭; 张洪武 . 搅拌摩擦焊中动态再结晶及硬度分布的数值模拟[J]. 金属学报, 2006, 42(9): 998-1002 .
, . NUMERICAL SIMULATION OF DYNAMIC RECRYSTALLIZATION AND HARDNESS DISTRIBUTION IN FRICTION STIR WELDING PROCESS[J]. Acta Metall Sin, 2006, 42(9): 998-1002 .

全文: PDF(202 KB)  
摘要: 使用率相关弹粘塑性本构模型模拟了搅拌摩擦焊接过程,并着重研究了过程参数对搅拌摩擦焊接动态再结晶过程以及搅拌区内材料硬度的影响. 结果表明,在搅拌区内焊接构件上、下表面沿垂直于焊缝方向的硬度分布规律不同. 焊接构件顶部材料的硬度分布符合实验得到的结果,即焊缝中心线附近材料硬度较低,热力影响区外材料硬度逐渐升高并最终达到母材的硬度; 但是在焊接构件下表面并不显示这一硬度分布规律. 搅拌区内材料的硬度与搅拌头转速无明显关系,但随焊速的增加而增加. 焊接构件中部材料的晶粒尺寸大于焊接构件底部材料的晶粒尺寸,且搅拌区内晶粒尺寸随搅拌头转速的增加趋于均匀.
关键词 搅拌摩擦焊接数值模拟动态再结晶    
Abstract:Elastic viscoplastic rate dependent constitutive model was used to simulate the friction stir welding process. The effect of process parameters on the continuous dynamic recrystallization phenomenon and hardness in the nugget zone was studied in details. Results indicate that the distributions of microhardness on the top surface and on the bottom surface of the friction stir weld are different. The former exhibits that the microhardness near the welding line is smaller, and the one outside of the nugget zone becomes bigger and then is equal to the hardness of the parent metal, which can be fitted well with the experimental tests. For the latter the above distribution law is not exhibited. The rotational speed of the welding tool only has little effect on the hardness distribution but the hardness in the nugget zone can be increased with the increase of the translational speed of the welding tool. The grain size near the bottom surface in the nugget zone is smaller than that in the middle of the weld. The size of the grain in the nugget zone becomes more homogeneous with the increase of the angular velocity of the pin.
Key wordsfriction stir welding    numerical simulation    dynamic recrystallization
收稿日期: 2005-12-15     
ZTFLH:  TG407  
[1]Mishra R S,Ma Z Y.Meter Sci Eng,2005;R50:1
[2]Zhang H W,Zhang Z,Chen J T.Acta Metall Sin,2005;41:853(张洪武,张昭,陈金涛.金属学报,2005;41:853)
[3]Zhang H W,Zhang Z,Chen J T.Mater Sci Eng,2005;A403:340
[4]Zhang H W,Zhang Z,Chen J T.Trans Chin Weld Inst,2005;26(9):13(张洪武,张昭,陈金涛.焊接学报,2005;26(9):13)
[5]Zhang Z,Chen J T,Zhang H W.In:Batra R C,Qian L F,Zhang Y L,Li X N,Tso S K,eds.,Int Conf on Mechanical Engineering and Mechanics,Nanjing:Science Press and Science Press USA Inc.,2005:1338
[6]Zhang Z,Chen J T,Zhang H W.J Aeronaut Mater,2005;25(6):33(张昭,陈金涛,张洪武.航空材料学报,2005;25(6):33)
[7]Deng X M,Xu S W.J Manuf Process,2004; 6(2):125
[8]Colligan K.Weld J,1999; 78:2295
[9]Guerra M,Schmidt C,McClure J C,Murr L E,Nunes A C.Mater Charact,2003; 49:95
[10]Ma Z Y,Mishra R S,Mahoney M W.Acta Mater,2002;50:4419
[11]Murr L E,Liu G,McClure J C.J Mater Sci Lett,1997;16:1801
[12]Li Y,Murr L E,McClure J C.Mater Sci Eng,1999; A271:213
[13]Fratini L,Buffa G.Int J Mach Tools Manuf,2005; 45:1188
[14]Ponthot J P.J Mater Process Technol,1998; 80-81:628
[15]Belytschko T,Liu W K,Moran B.Nonlinear Finite Elements for Continua and Structures.New York:John Wiley,2000:289
[16]Simo J C,Hughes T J R.Computational Inelasticity.New York:Springer,1998:143
[17]Lenard J G,Pietrzyk M,Cser L.Mathematical and Physical Simulation of the Properties of Hot Rolled Products.Amsterdam:Elsevier,1999:52
[18]Zhang B,Baker T N.J Mater Process Technol,2004; 153-154:881
[19]Park S H C,Sato Y S,Kokawa H.J Mater Sci,2003; 38:4379
[20]Brown W F,Mindlin J H,Ho C Y.Aerospace Structural Metals Handbook.Vol.3,West Lafayette:Purdue University,1993:8
[21]McCiure J C,Feng Z,Tang W,Gould J E,Murr L E,Guo X.In:Vitek J M,ed.,Proc 5th Int Conf on Trends in Welding Research,Pine Mountain:ASM International,1998:590
[22]Colegrove P,Painter M,Graham D,Miller T.Proc 2nd Int Symp on Friction Stir Welding,Gothenburg:TWI center,2000:162
[23]Marzoli L M,Strombeck A V,Dos Santos J F,Gambaro C,Volpone L M.Compos Sci Technol,2006; 66:363
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[10] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[11] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[12] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[13] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[14] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[15] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.