Please wait a minute...
金属学报  2005, Vol. 41 Issue (11): 1174-1182     
  论文 本期目录 | 过刊浏览 |
应变速率对管线钢近中性pH值环境敏感开裂的影响
方丙炎; 韩恩厚; 王俭秋; 柯 伟
中国科学院金属研究所材料环境腐蚀中心
Influence of strain rate on near-neutral pH environmentally assisted cracking of pipeline steels
FANG Bingyan; HAN Enhou; WANG Jianqiu; KE Wei
Environmental Corrosion Center; Institute of Metal Research; The Chinese Academy of Sciences
引用本文:

方丙炎; 韩恩厚; 王俭秋; 柯伟 . 应变速率对管线钢近中性pH值环境敏感开裂的影响[J]. 金属学报, 2005, 41(11): 1174-1182 .
, , , . Influence of strain rate on near-neutral pH environmentally assisted cracking of pipeline steels[J]. Acta Metall Sin, 2005, 41(11): 1174-1182 .

全文: PDF(834 KB)  
摘要: 以X-70管线钢近中性pH值溶液(NS4和实际土壤溶液)为研究对象, 研究了恒载荷、慢应变速率拉伸(SSRT)和循环载荷等不同条件下的环境开裂行为.结果表明, 在该体系中局部应变速率是联系各种不同断裂过程的纽带, 决定着断裂的模式.当该局部应变速率低于发生应力腐蚀开裂(SCC)敏感局部应变速率的上限(即5×10-5 s-1)时,SCC才能够发生;在循环载荷作用下, 当该局部应变速率高于此上限时, 将发生力学因素起主导作用的腐蚀疲劳(CF)开裂;该局部应变速率继续升高时, 将发生机械断裂. 对X-70管线钢在近中性pH值的环境开裂, 不论开裂过程是溶解或(和)氢的作用占主导, 均受局部应变速率控制. 在通常遇到的现场服役条件下, X-70管线钢在近中性pH值溶液中的开裂模式是SCC, 不是CF, 应称之为“近中性pH 值应变促进腐蚀开裂”, 实质上这是一种由局部应变速率决定的环境开裂行为.
关键词 局部应变速率应力腐蚀开裂腐蚀疲劳    
Abstract:Environmentally assisted cracking (EAC) of X-70 pipeline steels in near-neutral pH environments, including the standard solution, NS4, and an actual soil solution, was investigated using constant loading tests, slow strain rate tests (SSRT) and cyclic loading tests. It was revealed that local strain rate is a key factor that builds a bridge between different tests, different samples and different cracking processes, and dominates fracture mode. Therefore, local strain rate is one of the most important parameters in the EAC of X-70 pipeline steels. Stress corrosion cracking (SCC) can occur only if the local strain rate is smaller than the upper susceptible local strain rate for SCC, i.e. 5×10-5 s-1. As for cyclic loading tests, when the local strain rate is higher than this upper local strain rate for SCC, corrosion fatigue (CF) will occur. Further more, mechanical facture will take place if the local strain rate is high enough. Meanwhile, it is shown that as far as the EAC of X-70 pipeline steels in near-neutral pH environments is concerned, the cracking is dominated by the local strain rate no matter which the mechanism is, dissolution or (and) hydrogen related process. Thus the mechanism of the near-neutral pH cracking for X-70 in-service pipelines in the field is SCC instead of CF. In addition, it is proposed that the term of near-neutral pH SCC is inappropriate, which should be replaced by near-neutral strain assisted corrosion cracking to better describe the EAC of X-70 pipeline steels that is, in fact, local-strain-rate-based environmentally cracking.
Key wordslocal strain rate    stress corrosion cracking    corrosion fatigue
收稿日期: 2005-06-30     
ZTFLH:  U177  
[1] Staehle R W. In: Jones R H ed., Chemistry and Electrochemistry of Corrosion and Stress Corrosion Cracking: A Symposium Honoring the Contributions of Staehle R W, New Orleans, LA: TMS, 2001: K-1
[2] Wei R P, Landes J D. Mater Research and Standards, 1969; 9: 25
[3] Weir T W, Simmons G W, Hart R G, Wei R P. Scr Metall, 1980; 14: 357
[4] Wei R P, Simmons G W. Int J Fatigue, 1981; 17: 235
[5] Wei R P, Gao M. Scr Metall, 1983; 17: 959
[6] Austen I M, Mclntyre P. Met Sci, 1979; 13: 420
[7] Ford F P. In: Gangloff R P, Ives M B eds., Proce First Int Conf Environment-Induced Cracking of Metals, Houston, Texas: NACE, 1988: 139
[8] Jones R H. Stress-Corrosion Cracking: Materials Performance Evaluation, Metals Park, Ohio: ASM International, The Materials Information Society, 1992: 32
[9] Romanov V V. Stress- Corrosion Cracking of Metals, Washington D.C. Trans Technol House, 1961: 29
[10] Congleton J, Shoji T, Parkins R N. Corros Sci, 1985; 25: 633
[11] Shoji T, Suzuki S, Ballinger T G. Proc on 7th Int Symp on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Breckenbidge, Colorado: NACE, 1995: 881
[12] Suzuki S, Shoji T, Yi Y S, Kim J. Proc on 8th Int Symp on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Amelia Island, Plantation, FL: American Nuclear Society, 1997: 695
[13] Fang B Y, Atrens A, Wang J Q, Han E H, Zhu Z Y, Ke W. J Mater Sci, 2003; 38(1): 127
[14] Fang B, Han E, Zhu Z, Wang J, Ke W. J Mater Sci Technol, 2002; 18: 3
[15] National Energy Board, Canada, MH-2-95, 1996
[16] Parkins R N, Beavers J A. Corrosion, 2003; 59: 258
[17] Ford F P. Corrosion'86, Houston, Texas: NACE, 1986: paper No.327
[18] Ford F P, Taylor D F, Andresen P L, Ballinger R G. Elctric Ponwer Research Institute Report NP5064S, 1987
[19] Elboujdaini M, Wang Y Z, Revie R W, Parkins R N, She-hata M T. Corrosion'2000, Houston, Texas: NACE, 2000: Paper No.00379
[20] Department of Tranportation, Research and Special Programs Adminstration, Office of Pipeline Safety, Final Report on Stress Corrosion Cracking Study, TTO Number 8, Integrity Management Program, Delivery Order DTRS56-02-D-70036, Moon Township, PA, 2005
[21] Williams B W, Lambert S B, Zhang X, Plumtree A, Sutherby R. In: Luo J, Shoesmith D, Elboujdaini M, Pat- naik P eds., 2nd Int Symp on Environmental Degradation of Materials and Corrosion Control in Metals as held at the 42nd Annual Conference of Metallurgists of CIM (COM 2003), Vancouver, Canada: CIM, 2003: 87
[22] Ahmed T M, Lambet S B, Sutherby R, Plumtree A. Corrosion,1998; 54: 115
[23] Pikey A K, Lambert S B, Plumtree A. Corrosion, 1995; 52: 91
[24] Plumtree A, Lambert S B, Sutherby R. EUROCORR'96, Nice, France: European Corrosion Congress, 1996: 262
[25] Zhang X Y, Lambert S B, Surtherby R, Plumtree A. Cor-rosion, 1999; 55: 297
[26] Lambert S B, Beavers J A, Delanty B, Sutherby R, Plumtree A. Proc Int Pipeline Conf, New York: ASME, 2000: 961
[27] Williams B W, Lambert S B, Sutherby R, Plumtree A. Corrosion, 2004; 60: 95
[28] Ahmed T M, Lambert S B, Sutherby R, Plumtree A. Corrosion, 1997; 53: 581
[29] Plumtree A, Lambert S B. In: Elboujdaini M, Ghali E, Zheng W eds., Symposium on Environmentally Induced Cracking of Metals and Alloys, Ottawa: The Metallurgical Soceity of CIM, 2000: 7
[30] Bainbridge D, Lambert S B, Jack T R, Sutherby R, Plumtree A. EUROCORR 2001, Lake Garda, Italy: The European Corrosion Congress, 2001: 4
[31] Lambert S B, Plumtree A. EUROCORR 2001, Lake Garda, Italy: The European Corrosion Congress, 2001: 6
[32] Lambert S B, Plumtree A, Sutherby R. Corrosion'2000, Orlando, FL: NACE, 2000: paper No.00364
[33] Plumtree A, Lambert S B, Sutherby R. EUROCORR '99, Aachen, Germany: The European Corrosion Congress, 1999: 269
[34] Eadie R L, Szklarz K E, Sutherby R L. Corrosion, 2005; 61: 167
[35] Been J, Lu H, Eadie R, Shen G, Sutherby R. Corro-sion'2004, Houston, Texas: NACE, 2004: paper No.04552
[36] Wang S H, Chen W, Jack T, King F, Fessler R R, Krist K. Proc 2000 Int Pipeline Conf, New York: ASME, 2000: 1005
[37] King R, Jack R, Chen W, Wang S H, Elboujdaini M, Revie W, Worthingham R, Dusek P. Corrosion'2001, Houston, Texas: NACE, 2001: paper No.01214
[38] Wang Y Z, Revie R W, Shehata M R, Parkins R N, Krist K. Proc Int Pipeline Conf, Vol.1, New York: ASME, 1998: 529
[39] Elboujdaini M, Wang Y Z, Revie R W. Proc Int Pipeline Conf, Vol.2, New York: ASME, 2000: 967
[40] Wang Y Z, Revie R W, Shehata M T. Gas Research Institute Report MTL97-63(CF),1997
[41] Been J, Elboujdaini M, Revie R W, de Silveira G. Materials Technology Laboratory, S001-55(CF), 2000
[42] Kim B A, Zheng W, Williams G, Laronde M, Gianetto J A, Shen G, Tyson W R, Oguchi N, Hosokawa Y. Proc of 2004 Int Pipeline Conf, New York: ASME, 2004: Paper IPC04-0280
[43] ASTM Standard E8M-01, 2001
[44] ASTM Standard G1S9-00, 2000
[45] ASTM Standard E647-00, 2000
[46] Zhou X, Ke W, Zang Q. Acta Metall Sin (Engl Lett), 1990; 3: 320
[47] Zhou X Y, Ke W. Acta Metall Sin, 1992; 28: 356 (周向阳,柯伟.金属学报,1992;28:356)
[48] Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks Handbook. 3rd ed., New York: ASME Press, The American Society of Mechanical Engineers, 2000
[49] Gao Y C, Hwang K C. In: Francois D ed., Advances in Fracture Research: 5th Int Conf on Fracture, Cannes, France: ICF, 2, 1981: 669
[50] Dean R, Hotchinson J W. ASTM STP 700, 1980: 383
[51] Lam P S, McMeeking R M. J Mech Phys Solids, 1984; 32: 395
[52] Drugan W J, Rice J R, Sham R L. J Mech Phys Solids, 1980; 30: 447
[53] Fang B, Han E H, Wang J, Ke W. Corrosion, in press
[54] Tromans D. Metall Trans, 1981; 12A: 1445
[55] Pickens J R, Christodoulou L. Met Trans, 1987; 18A: 135
[56] Parkins R N. In: Bruemmer S M, Meletis E I, Jones R H, Gerberich W W, Ford F P, Staehle R W eds., Proc of Parkins Symp on Fundamental Aspects of Stress Corrosion Cracking, Cincinnati, Ohio: TMS, 1991: 1
[57] Fang B Y, Han E H, Wang J Q, Zhu Z Y, Ke W. J Mater Sci, in press
[58] Johnson H H, Lin R W. In: Bernstein I M, Thompson A W eds., Hydrogen Effects in Metals, New York: AIME, 1981: 3
[59] Sofronis P, McMeeking R M. J Mech Phys Solid, 1989; 37: 317
[60] Krom A H M, Koers R W J, Bakker A. J Mech Phys Solid, 1999; 47: 971
[61] Fang B Y. PhD Dissertation, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang, 2005 (方丙炎.中国科学院金属研究所博士学位论文,沈阳,2005)
[62] Oriani R A. Acta Metall, 1970; 18: 147
[63] Parkins R N, Blanchard W K Jr, Delanty B S. Corrosion, 1994; 50: 394s
[1] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[2] 谭季波, 王翔, 吴欣强, 韩恩厚. 316LN不锈钢管状试样高温高压水的腐蚀疲劳行为[J]. 金属学报, 2021, 57(3): 309-316.
[3] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[4] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[5] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[6] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[7] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[8] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[9] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[10] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[11] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[12] 郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.
[13] 吴欣强, 谭季波, 徐松, 韩恩厚, 柯伟. 核级低合金钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2015, 51(3): 298-306.
[14] 闫茂成, 王俭秋, 韩恩厚, 孙成, 柯伟. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137-1145.
[15] 郝文魁,刘智勇,李晓刚,杜翠薇. 16Mn钢及其热影响区在碱性硫化物环境中的应力腐蚀行为与机理[J]. 金属学报, 2013, 49(7): 881-889.