Please wait a minute...
金属学报  2005, Vol. 41 Issue (11): 1183-1189     
  论文 本期目录 | 过刊浏览 |
纳米高强Ti-Nb-Zr-Sn合金
郝玉琳; 杨 锐
中国科学院金属研究所沈阳材料科学国家(联合)实验室
High strength nano-structured Ti-Nb-Zr-Sn alloy
HAO Yulin; YANG Rui
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences
引用本文:

郝玉琳; 杨锐 . 纳米高强Ti-Nb-Zr-Sn合金[J]. 金属学报, 2005, 41(11): 1183-1189 .
, . High strength nano-structured Ti-Nb-Zr-Sn alloy[J]. Acta Metall Sin, 2005, 41(11): 1183-1189 .

全文: PDF(644 KB)  
摘要: 在常见的应变速率范围内, 多数金属材料的冷加工变形主要是通过位错增殖、形变孪晶或马氏体相变等机制实现, 这些变形机制无法有效地细化晶粒,通常只有采用剧烈塑性变形方法制备无缺陷的金属纳米材料. 最近在研究β型Ti-Nb-Zr-Sn钛合金形变过程时,发现塑性失稳导致局域化非均匀塑性变形对晶粒细化具有显著作用;利用该变形机理, 采用常规冷轧方法即可以轧制出厚度为1.5 mm 板材, 其晶粒尺寸小于50 nm.本文主要论述该合金冷加工组织细化过程和时效强化机理, 并讨论非均匀塑性变形方式的可能原因.
关键词 钛合金纳米结构非均匀变形失稳剪切    
Abstract:To obtain fully dense nano-structured metallic materials, severe plastic deformation technique usually has to be used because normal deformation mechanisms, such as dislocation interaction, deformation twins and/or martensitic transformation, are ineffective in grain refinement. Recently we found localized unstable plastic deformation in a β type Ti-Nb-Zr-Sn titanium alloy that is very effective in grain refinement.By taking advantage of this deformation mechanism, grain size less than 50 nm can be easily achieved in conventionally cold-rolled sheet with thickness of 1.5 mm. In this paper we examine the conditions under which such an unusual deformation mechanism can be realised and report further strengthening of the nano-structured alloy by aging treatment. The origin of this deformation mechanism will be discussed.
Key wordstitanium alloy    nanostructure    nonuniform deformation    unstable shear
收稿日期: 2005-06-30     
[1] Gleiter H. Prog Mater Sci, 1989; 33: 223
[2] Valiev R Z. Nature Mater, 2004; 3: 511
[3] Valiev R Z. Acta Mater, 1994; 42: 2467
[4] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 102
[5] Sergueeva A V, Song C, Valiev R Z, Mukherjee A K. Mater Sci Eng, 2003; A339: 159
[6] Stolyarov V V, Zhu Y T, Alexandrov I V, Lowe T C, Valiev R Z. Mater Sci Eng, 2003; A343: 43
[7] Hao Y L, Li S J, Sun S Y, Zheng C Y, Hu Q M, Yang R. Appl Phya Lett, 2005; 87: 091906
[8] Jamieson J C. Science, 1963; 140: 72
[9] Vohra Y K, Spencer P T. Phys Rev Lett, 2001; 86: 3068
[10] Akahama Y, Kawamura H, Bihan T L. Phys Rev Lett, 2001; 87: 275503
[11] Sikka S K, Vohra Y K, Chidambaram R. Prog Mater Sci, 1982; 27: 245
[12] Bagariatskii Yu A, Nosova G I, Tkgunova T V. Dok Akad Nauk SSSR, 1958; 122: 593
[13] Luke C A, Taggart R, Polonis D H. Trans ASM, 1964; 57: 142
[14] Fisher E S, Dever D. Acta Metall, 1970; 18: 265
[15] Collings E W, Ho J C. Phya Rev, 1972; 5: 4435
[16] Collings E W, Gegel H L. Scr Metall, 1973; 7: 437
[17] Collings E W. Physical Metallurgy of Titanium Alloys. ASM, Metals Park, OH, 1984: 78
[18] Barsoum M W, Farber L, El-Raghy T. Metall Mater Trans, 1999; 30A: 1727
[19] Barsoum M W, Zhen T, Kalidindi S R, Radovic M, Mu- rugaiah A. Nature Mater, 2003; 2: 107
[20] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[21] Wolf D, Yamakov V, Phillpot S R, Mukherjee A, Gleiter H. Acta Mater, 2005; 53: 1
[22] Hasnaoui A, van Swygenhoven H, Derlet P M. Science, 2003; 300: 1550
[23] Jia D, Ramesh K T, Ma E. Acta Mater, 2003; 51: 3495
[24] Wei Q, Kecskes L, Jiao T, Hartwig K T, Ramesh K T, Ma E. Acta Mater, 2004; 52: 1859
[25] Hart E W. Acta Metall, 1967; 15: 351
[26] Kumar K S, Van Swygenhoven H, Suresh S. Acta Mater, 2003; 51: 5743
[27] Morris Jr J W, Clatterbuck D M, Chrzan D C, Krenn C R, Luo W, Cohen M L. Mater Sci Forum, 2003; 426-432: 4429
[28] Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T. Science, 2003; 300: 464
[29] Zhu Y T, Huang J Y, Gubicza J, Ungar T, Wang Y M, Ma E, Valiev R Z. J Mater Res, 2003; 18: 1908
[30] Valiev R Z, Sergueeva A V, Mukherjee A K. Scr Mater, 2003; 49: 669
[31] Lu K, Lu J. Mater Sci Eng, 2004; A375-377: 38
[32] Liao X Z, Zhao Y H, Zhu Y T, Valiev R Z, Gunderov D V. J Appl Phys, 2004; 96: 636
[33] Suzuki T, Wuttig M. Acta Metall, 1975; 23: 1069
[34] Williams J C. In: Jaffee R I, Burte H M eds., Titanium Science and Technology (Proc. 2nd Int. Conf. on Titanium), New York: Plenum, 1973: 1433
[35] Ahluwalia R, Lookman T, Saxena A. Phys Rev Lett, 2003; 91: 055501
[36] Tolbert S H, Alivisatos A P. Science, 1994; 265: 373
[37] Perez-Prado M T, Hines J A, Vecchio K S. Acta Mater, 2001; 49: 2905
[38] Bailey J E, Hirsch P B. Proc R Soc London, 1962; 267A: 11
[39] Li J C M. J Appl Phys, 1962; 33: 2958
[40] Guduru P R, Ravichandran G, Rosakis A J. Phys Rev, 2001; 64E: 036128
[41] Williams J C, Baggerly R G, Paton N E. Metall Trans, 2002; 33A: 837
[42] Damiano U U. Trans TMS-AIME, 1969; 245: 637
[43] Srinivasan S G, Hatch D M, Stokes H T, Saxena A, Albers R C, Lookman T. arXiv:cond-mat/0209530 vl, 23 Sep., 2002
[44] Orowan E. Nature, 1942; 149: 463
[45] Roundy D, Krenn C R, Cohen M L, Morris Jr J W. Philos Mag, 2001; 81A: 1725
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[4] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[7] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[8] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[9] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[10] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[11] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[12] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
[13] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[14] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[15] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.