Please wait a minute...
金属学报  2004, Vol. 40 Issue (12): 1274-1280     
  论文 本期目录 | 过刊浏览 |
Mo对高强度钢延迟断裂行为的影响
惠卫军;董瀚;翁宇庆;时捷;章晓中
钢铁研究总院结构材料研究所; 北京 100081
EFFECT OF MOLYBDENUM ON DELAYED FRACTURE BEHAVIOR OF HIGH STRENGTH STEEL
HUI Weijun; DONG Han; WENG Yuqing; SHI Jie; ZHANG Xiaozhong
Institute of Structural Materials; Central Iron & Steel Research Institute; Beijing 100081
引用本文:

惠卫军; 董瀚; 翁宇庆; 时捷; 章晓中 . Mo对高强度钢延迟断裂行为的影响[J]. 金属学报, 2004, 40(12): 1274-1280 .
, , , , . EFFECT OF MOLYBDENUM ON DELAYED FRACTURE BEHAVIOR OF HIGH STRENGTH STEEL[J]. Acta Metall Sin, 2004, 40(12): 1274-1280 .

全文: PDF(425 KB)  
摘要: 在含V和Nb的40Cr钢中添加不同质量分数(0---1.54%) 的Mo元素, 采用缺口拉伸试样和改进的M-WOL型试样研究了Mo对高强度钢延迟断 裂行为的影响. 结果表明, 随着Mo含量的增加, 实验钢的延迟断裂抗力逐渐提高; 当Mo含量超过1.15%时, 延迟断裂抗力不再提高. EDS分析结果表明, 钢中Mo元素 在晶界发生偏聚, 偏聚范围在几个纳米尺度内. 通过电子能量损失谱(EELS)证明, Mo元素在原奥氏 体晶界的偏聚能够提高钢的晶界结合强度. 在钢中添加Mo能够显著提高钢的回火 抗力和晶界结合强度, 这是其具有高的延迟断裂抗力的主要原因. 碳化物Mo2C 对氢的捕集作用亦能够提高钢的延迟断裂抗力. Mo和V元素的二次硬化碳化物在半 共格和非共格状态时, 实验钢的延迟断裂抗力显著提高.
关键词 Mo元素高强度钢延迟断裂    
Abstract:Four heats of V and Nb microalloyed 40Cr steel containing 0 to 1.54% Mo were used to study the effect of Mo on delayed fracture resistance. The results of both notched tensile sustained load test and stress corrosion cracking test show that the delayed fracture resistance increases with increasing Mo content. Maximum delayed fracture resistance is obtained at a Mo concentration of about 1.15%. The result of EDS (energy dispersive spectroscopy) analysis shows that Mo tends to segregate in the grain boundary in a scale of no more than a few nanometers. EELS (electron energy loss spectra) measurement indicates that the segregation of Mo in grain boundary tends to increase the strength of grain boundary. The pronounced effect of Mo in raising the tempering resistance and the ability to strengthen prior austenite grain boundary are the main reasons for the beneficial effect of Mo on delayed fracture resistance. Hydrogen trapping effect caused by fine Mo2C precipitation could also improve the delayed fracture resistance. It is also confirmed that the tested steels could have a much higher delayed fracture resistance when the secondary hardening carbides of V and Mo are in the condition of slight over-raging.
Key wordsmolybdenum    high strength steel    delayed fracture
收稿日期: 2003-12-28     
ZTFLH:  TG111.91  
[1] Archer R S, Briggs J Z, Loeb C M Jr. MolybdenumSteels, Iron and Alloys. New York: Climax Molybdenum Co., 1970:1
[2] Honeycombe S R, Bhadeshia H K D H. SteelsMicro structure and Properties. 2nd ed., London: Edward Arnold, 1995: 182
[3] Dumoulin P, Guttmann M, Foucault M, Palmier M, Wayman M, Biscondi M. Met Sci, 1980: 14(1):1
[4] Grobner P J, Sponseller D L, Diesburg. Corrosion, 1979: 35(6): 240
[5] Craig B D, Krauss G. Metall Trans, 1980: 11A:1799
[6] Craig B D. Metall Trans, 1982: 13A: 1099
[7] Charbonnier J C, Margot-Marette H, Brass A M, Aucouturier M. Metall Trans, 1985:16A: 935
[8] Asahi H, Sogo Y, Ueno M, Higashiyama H. Metall Trans, 1988: 19A: 2171
[9] Xiang C Y. Alloyed Structural Steels. Beijing: Metallurgical Industry Press, 1999: 132, 335 (项程云.合金结构钢.北京:冶金工业出版社,1999:132, 335)
[10] Hui W J, Dong H, Weng Y Q. Iron Steel, 2001: 36(3): 69 (惠卫军,董瀚,翁字庆.钢铁,2001:36(3):69)
[11] Chu W Y. Hydrogen Damage and Delayed Failure. Beijing: Metallurgical Industry Press, 1988: 472 (褚武扬.氢损伤和滞后断裂.北京:冶金工业出版社,1988: 472)
[12] Weng Y Q, et al. Ultrafine Grained Steels-The Theory of Microstructure Refinement and Controlling Technology for Steels. Beijing: Metallurgical Industry Press, 2003: 967 (翁宇庆等.超细晶钢--钢的组织细化理论与控制技术.北 京:冶金工业出版社,2003:967)
[13] Hui W J. PhD Thesis, Central Iron & Steel Research Institute, Beijing, 2003 (惠卫军.钢铁研究总院博士学位论文,北京,2003)
[14] Li G F, Wu R G, Lei T C. Metall Trans, 1992: 23A: 2879
[15] Hui W J, Dong H, Weng Y Q. J Iron Steel Res Int, 2003:10(4): 75
[16] Llewellyn D T. Ironmaking Steelmaking, 1996: 23: 397
[17] Gojic M, Kosec L. ISIJ Int, 1997: 37: 412
[18] Zhong P, Gu B Z, Jin J J, Wang H T. J Aeronaut Mater,1995: 15(4): 41 (钟平,古宝珠,金建军,王洪涛,航空材料学报,1995:15(4): 41)
[19] Muller D A, Batson P E, Subramanian S, Sass S L, Silcox J. J Phys Rev Lett, 1995: 75: 4744
[1] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[2] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[3] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[4] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[5] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[6] 张永健,惠卫军,董瀚. 一种低碳Mn-B系超高强度钢板热成形后的氢致延迟断裂行为[J]. 金属学报, 2013, 49(10): 1153-1159.
[7] 王颖,张柯,郭正洪,陈乃录,戎咏华. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48(6): 641-648.
[8] 王存宇 时捷 曹文全 惠卫军 王毛球 董瀚. Q&P工艺处理低碳CrNi3Si2MoV钢中马氏体的研究[J]. 金属学报, 2011, 47(6): 720-726.
[9] 孙敏 肖葵 董超芳 李晓刚 钟平. 带腐蚀产物超高强度钢的电化学行为[J]. 金属学报, 2011, 47(4): 442-448.
[10] 李阳 张永健 惠卫军 王毛球 董瀚. 1500 MPa级高强度钢42CrMoVNb的氢吸附行为[J]. 金属学报, 2011, 47(4): 423-428.
[11] 张柯 许为宗 郭正洪 戎咏华 王毛球 董瀚. 新型Q-P-T和传统Q-T工艺对不同C含量马氏体钢组织和力学性能的影响[J]. 金属学报, 2011, 47(4): 489-496.
[12] 张永健 惠卫军 项金钟 董瀚 翁宇庆. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886.
[13] 王六定 丁富才 王佰民 朱明 钟英良 梁锦奎. 低合金超高强度钢亚结构超细化对韧性的影响[J]. 金属学报, 2009, 45(3): 292-296.
[14] 董翠; 张述泉; 李安; 王华明 . 激光熔化沉积300M超高强度钢的显微组织[J]. 金属学报, 2008, 44(5): 598-602 .
[15] 颜敏; 张述泉; 王华明 . 激光熔化沉积AerMet100耐蚀超高强度钢凝固组织及力学性能[J]. 金属学报, 2007, 43(5): 472-476 .