金属学报, 2025, 61(1): 165-176 DOI: 10.11900/0412.1961.2024.00208

研究论文

后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响

赵亚楠, 郭乾应, 刘晨曦, 马宗青,, 刘永长

天津大学 材料科学与工程学院 天津 300072

Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy

ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing,, LIU Yongchang

School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

通讯作者: 马宗青,zqma@tju.edu.cn,主要从事金属材料粉体制备、粉末冶金和3D打印成形的研究

责任编辑: 肖素红

收稿日期: 2024-06-17   修回日期: 2024-07-29  

基金资助: 国家自然科学基金项目(U22A20172)
国家自然科学基金项目(52122409)
国家重点研发计划项目(2023YFB3712002)

Corresponding authors: MA Zongqing, professor, Tel: 13702124121, E-mail:zqma@tju.edu.cn

Received: 2024-06-17   Revised: 2024-07-29  

Fund supported: National Natural Science Foundation of China(U22A20172)
National Natural Science Foundation of China(52122409)
National Key Research and Development Program of China(2023YFB3712002)

作者简介 About authors

赵亚楠,男,1996年生,博士生

摘要

激光粉末床熔融(LPBF) 3D打印技术具有跨维度多尺度成形的技术特点,同时表现出非平衡快速凝固的冶金特征,与传统制造工艺形成的微观组织存在明显差异。基于传统制造工艺发展而来的热处理工艺难以适用于LPBF制备的样品,因此,研究LPBF打印件专用的后续热处理制度对于其组织和性能调控具有重要的意义。本工作以LPBF制备的GH4099合金为研究对象,研究了后续热处理对3D打印高温合金非平衡微观组织和高温力学性能的影响。结果表明,固溶处理不仅影响打印组织的再结晶行为,而且也与碳化物和γ'相的析出行为密切相关,因而对GH4099合金的高温延伸率影响较大。LPBF制备GH4099合金中的多尺度异质结构使其组织热稳定性明显高于传统铸锻件,因此需要更高的固溶热处理温度以促进其完全再结晶。经1150 ℃固溶处理1.5 h后,GH4099打印件中柱状晶转变为等轴晶并形成大尺寸孪晶,同时晶界处M23C6碳化物的析出也受到抑制。在随后的时效热处理过程中,由于再结晶释放了3D打印晶粒内部储存的畸变能,使得基体中γ'相的析出受到了明显抑制。基于上述结果,通过优化热处理制度,GH4099合金打印件实现了高温强度和塑性的良好匹配。

关键词: 激光粉末床熔融; 非平衡组织; 热处理; γ'; 高温力学性能

Abstract

The multi-dimensional, multi-scale forming characteristics of laser powder bed fusion (LPBF) 3D printing technology, combined with its complex non-equilibrium solidification process, result in multilayered microstructures that differ significantly from those produced by traditional manufacturing methods. However, it is challenging to apply existing heat treatment solutions, developed for conventional manufacturing processes, to LPBF. Therefore, a tailored heat treatment approach is required for LPBF-printed components to regulate their microstructure and properties effectively. This study investigated the modulation mechanism of subsequent heat treatment on the non-equilibrium microstructure and high-temperature mechanical properties of 3D-printed GH4099 superalloy produced via LPBF. The findings reveal that solution treatment influences the recrystallization behavior of the printed microstructure and the precipitation behavior of carbides and γ' phases, which play critical roles in determining the alloy's high-temperature elongation. The multi-scale heterogeneous structure in the LPBF-fabricated GH4099 alloy enhances its microstructural thermal stability beyond that of conventional castings and forgings. Consequently, a high solution heat treatment temperature is necessary to achieve complete recrystallization. Following solution treatment at 1150 oC for 1.5 h, the columnar grains in the GH4099 prints were transformed into equiaxed grains, and large size twins were formed. Additionally, the precipitation of M23C6 carbides at the grain boundaries was suppressed. During subsequent aging heat treatment, the recrystallization induced by the solution treatment mitigated the distortion energy stored in the 3D-printed grains, thereby suppressing γ' phase precipitation in the matrix. As a result, by optimizing the heat treatment process, a favorable balance between high-temperature strength and plasticity was achieved in the GH4099 alloy.

Keywords: laser powder bed fusion; non-equilibrium microstructure; heat treatment; γ' phase; high- temperature mechanical property

PDF (4746KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176 DOI:10.11900/0412.1961.2024.00208

ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. Acta Metallurgica Sinica, 2025, 61(1): 165-176 DOI:10.11900/0412.1961.2024.00208

镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3]。随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求。激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4]。在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9]。非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能。例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效。此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12]。外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13]。热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14]。因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系。

沉淀强化型镍基高温合金通常以高体积分数的γ'相(Ni3(Al, Ti), L12)来进行强化,如IN738LC、René 104和CM247LC等,此类合金由于含有较高的Al、Ti含量(Al + Ti > 5%,质量分数,下同)而表现出较差的焊接性,无法在LPBF成形中实现无裂纹制造[15~17]。GH4099合金是一种以γ'相作为主要强化相的沉淀强化型镍基合金,并通过Co、Mo和W元素进行固溶强化,在800~900 ℃下表现出优异的强度[18]。由于GH4099合金含有适量的Al、Ti (Al + Ti < 5%)而表现出良好的可焊性,使其成为一种适用于LPBF工艺制造高温承载部件的潜在材料。与其他γ'相强化镍基高温合金一样,GH4099合金的强度主要与基体中γ'相的尺寸、形貌和体积分数有关[19~21]。此外,合金中的碳化物与GH4099合金的力学性能同样存在密切关系[22,23]。LPBF技术具有跨维度进行多尺度成形的技术特点,同时表现出非平衡快速凝固的冶金特征,与传统制造工艺形成的组织存在明显差异,现有的基于传统制造工艺发展而来的热处理工艺难以适用于LPBF。因此,许多研究人员通过优化LPBF成形镍基合金热处理方案来调控非平衡微观组织以获得理想的力学性能。例如,Chang等[18]报道了LPBF制备的GH4099合金经1100 ℃、1 h固溶 + 800 ℃、8 h时效热处理后,抗拉强度可达1214 MPa,延伸率达到39%,表现出优异的室温力学性能。Tang等[24]指出在LPBF制备的镍基合金中,初始微观结构中的元素偏析程度极低,因此无需进行传统的均匀化热处理。目前研究大多集中于室温下力学性能的优化,关于其高温性能的研究较少。高温变形时合金中γ'相的粗化、晶界的弱化以及位错运动方式的转变均会对其力学性能产生重要影响[25~27]。例如,Sun等[2]报道LPBF制备的GH3536合金经热等静压处理后在室温下的延伸率达到35%,但在900 ℃时,合金的延伸率仅为10%,难以满足应用需求。因此,研究LPBF制备的镍基合金中各向异性、元素微偏析、亚晶结构和强化相等多尺度非平衡微观组织在后续热处理过程中的演变规律及其对高温力学性能的影响,对推动LPBF成形镍基合金构件的工程应用具有重要意义。

基于上述背景,本工作研究了LPBF制备的GH4099合金中非平衡微观组织在后续热处理过程中的演变行为及其对高温力学性能的影响。此外,深入探讨了析出相和晶界特征分布对GH4099合金高温失效模式的影响,为后续LPBF制备镍基合金的微观组织调控和高温力学性能优化提供理论支撑。

1 实验方法

实验用材料为旋转电极法制备的GH4099合金球形粉末,粒度范围在15~53 μm之间,平均粒度为30 μm,化学名义成分(质量分数,%)为:Cr 18.67,Co 6.67,W 6.05,Mo 4.14,Al 1.97,Ti 1.23,C 0.036,Fe 0.5,Ni余量。所有样品均采用BLT-A300激光粉末床熔融打印设备进行成形,采用的LPBF成形参数为:激光功率350 W,扫描速率1100 mm/s,扫描间距90 μm,粉末层厚度40 μm。此外,成形时选择了双向扫描策略,并在每一层扫描后将扫描方向旋转67°,基板预热至100 ℃。在整个制造过程中,O2含量控制在100 × 10-6以下。所有样品的成形方向均与基板垂直。

为了研究固溶热处理对LPBF制备GH4099合金微观组织的影响,分别对样品进行1100 ℃、1 h和1150 ℃、1.5 h的固溶热处理,随后空冷,对应的热处理制度分别命名为S1和S2。为研究不同时效温度下γ'相的析出和长大行为,将S1样品分别在750、800和850 ℃时效8 h,空冷,对应的热处理制度分别命名为SA1-750、SA1-800和SA1-850;将S2样品在750 ℃时效8 h,空冷,对应的热处理制度命名为SA2-750,具体方案和命名见表1。锻造GH4099 合金通常在1100 ℃进行固溶热处理,表1中SA1-800方案常用于GH4099 锻造和轧制合金的热处理工艺。

表1   激光粉末床熔融(LPBF)制备GH4099合金样品的热处理方案

Table 1  Heat treatment schemes of GH4099 alloy samples fabricated by laser powder bed fusion (LPBF)

No.Heat treatment scheme
S11100 oC, 1 h, AC
S21150 oC, 1.5 h, AC
SA1-7501100 oC, 1 h, AC, 750 oC, 8 h, AC
SA1-8001100 oC, 1 h, AC, 800 oC, 8 h, AC
SA1-8501100 oC, 1 h, AC, 850 oC, 8 h, AC
SA2-7501150 oC, 1.5 h, AC, 750 oC, 8 h, AC

Note: AC—air cooling

新窗口打开| 下载CSV


样品经抛光后在 20%H2SO4 + 80%C2H6O (体积分数)溶液中以5 V的电压电腐蚀10 s,随后利用GX51光学显微镜(OM)、配备电子背散射衍射(EBSD)和X射线能谱(EDX)探测器的JSM-7800F扫描电子显微镜(SEM)进行微观组织观察和分析。EBSD样品使用10%HClO4 + 90%C2H6O (体积分数)的混合溶液在20 V电压下进行10 s的电解抛光,EBSD分析采用200倍的放大倍率和1 μm的步长。透射电子显微镜(TEM)分析用的样品使用相同的溶液在-20 ℃条件下进行双喷减薄。为了验证固溶热处理是否影响γ'相在后续时效处理过程的析出行为,使用Mattler Toledo TGA/DSC1差示扫描量热仪(DSC)分析了γ'相的快速析出温度范围。在DSC实验过程中,以15 ℃/min的速率将温度从25 ℃分别升至固溶热处理温度(1100和1150 ℃),分别保温10和15 min后以10 ℃/min的速率冷却至室温。

根据GB/T 4340.1—2009标准,利用MH-6L显微硬度计进行硬度测试,载荷为300 N,加载时间为15 s。利用CMT5105万能试验机以10-3 s-1的速率在900 ℃下进行高温拉伸测试。拉伸样品根据GB/T 4338—2006标准加工,样品标距尺寸为直径5 mm、长30 mm。所有拉伸实验的加载方向均与样品的成形方向平行。样品以25 ℃/min的速率加热至900 ℃,保温10 min后进行测试。

2 实验结果与讨论

2.1 热处理对再结晶和强化相析出行为的影响

图1a为LPBF制备GH4099合金成形态样品初始微观组织的OM像。成形态样品中未观察到裂纹和气孔的存在。如图2a所示,沿成形方向柱状晶跨越多个成形层进行外延生长。SEM观察进一步表明柱状晶由取向一致的亚微米级枝晶组成,且枝晶间区域未观察到偏析相的存在(图1b)。晶胞边界存在因逐层制造过程中多次冷热循环所导致的高密度缠结位错(图1c)。虽然在SEM像中未观察到明显的枝晶间偏析相(图1b),但EDX线扫描结果表明,在枝晶界仍存在Cr、Mo和Ti元素的偏析(图1d)。

图1

图1   LPBF制备GH4099合金成形态样品的原始微观组织和枝晶界的EDX线扫描结果

Fig.1   Original microstructures of the GH4099 alloy sample fabricated by LPBF (a-c) and EDX line-scan analysis for the cell boundary (d)

(a) OM image along building direction (b) SEM image of cells (c) TEM image of cells


图2

图2   LPBF制备GH4099合金及经S1和S2固溶热处理后的反极图,及不同状态下晶粒尺寸和硬度的变化

Fig.2   Inverse pole figures (IPFs) of GH4099 alloy sample fabricated by LPBF (a) and after S1 (b) and S2 (c) solution heat treatments, and the variations in the size of grains as well as the hardness with solution heat treatment (d) (BD—build direction)


图2ab分别为LPBF制备GH4099合金及经S1固溶热处理后样品的反极图。可以看出,原始样品和S1固溶热处理样品的晶粒形貌、尺寸和取向均无明显区别。S1固溶热处理样品晶粒形貌依旧为不规则的柱状晶,平均长度为(146 ± 39) μm,宽度为(44 ± 10) μm。相比之下,Zhang等[28]报道的锻造GH4099合金在1100 ℃固溶处理1 h后,晶粒尺寸从最初的47 μm快速粗化到148 μm。经相同工艺热处理后晶粒的粗化程度存在明显差异,这表明LPBF制备GH4099合金的晶粒热稳定性高于锻造合金。为探索非平衡态微观组织的演变,进一步提高了固溶处理的温度和时间。如图2cd所示,经S2热处理后,晶粒形貌发生了显著变化。晶粒长度减小至(80 ± 20) μm,宽度增加到(62 ± 15) μm。综合比较3组样品可以发现,成形态、S1和S2处理后样品中晶粒的长宽比分别为3.7 ± 0.2、3.3 ± 0.2和1.3 ± 0.1,这表明柱状晶随着固溶温度和时间的增加逐渐转变为等轴晶粒。如图2c中箭头所示,S2处理后样品中存在大量的退火孪晶,这是典型的再结晶微观组织特征。孪晶的生长可以起到分割和细化柱状晶的作用[29]。此外,与原始样品相比,S1和S2处理后样品的硬度分别降低了6%和13% (图2d)。上述结果可归因于晶粒再结晶过程中低角度晶界(LAGBs,2° ≤ θ < 15° (θ为晶界角度))通过晶体旋转和位错再分布逐渐转变为高角度晶界(HAGBs,θ ≥ 15°)[30],不规则形态的柱状晶随着HAGBs的迁移演变为等轴晶[31]。同时,在热处理过程中晶粒中的空位和位错等缺陷的湮灭释放了储存在基体中的应变能,最终降低了合金的硬度。

图3为LPBF制备GH4099合金经S1和S2固溶热处理后晶界析出相的SEM像和EDX分析结果。可以看出,经S1热处理后,成形态样品微观组织中的亚微米级枝晶已完全回溶,晶界处存在尺寸约为0.6 μm的析出相(图3a)。经S2热处理后,晶界析出相的尺寸减小到0.2 μm (图3b)。由图3中插图所示的EDX分析结果可知,上述析出物均可确定为富Cr的M23C6,这与Zhang等[32]的研究结果一致。碳化物的细化是由于固溶温度和保温时间的增加促进了在枝晶/晶界的Cr和Mo元素偏析的均匀化[23,33]。此外,M23C6的析出温度在648~1147 ℃之间[34],因此S2的固溶热处理方案可有效抑制M23C6的析出。众所周知,M23C6可起到钉扎作用而阻碍晶界的迁移[32],考虑到S1热处理处于M23C6的析出温度范围内,因此大量M23C6沿晶界的析出将严重阻碍再结晶所需的晶界隆起。

图3

图3   LPBF制备GH4099合金样品经S1和S2固溶热处理后晶界析出相的SEM像和EDX分析结果

Fig.3   SEM images and EDX analysis results (insets) of grain boundary precipitation phases in the GH4099 alloy samples fabricated by LPBF after S1 (a) and S2 (b) solution treatments (w—mass fraction, a—atomic fraction)


图4为LPBF制备GH4099合金经SA1-750、SA1-800、SA1-850和SA2-750热处理后γ'相的微观组织。如图4a~c所示,不同时效温度的样品中球形γ'相弥散分布在基体中,但γ'相的尺寸却差别很大。当时效温度为750 ℃时,γ'相的尺寸为(21 ± 5) nm,而当时效温度升高到850 ℃时,γ'相的尺寸增加到(60 ± 10) nm,γ'相尺寸列于表2,上述结果遵循Ostwald熟化机理[20,35]。值得注意的是,当时效温度为 850 ℃时,γ'相的粗化尤为明显。这是因为较高的时效温度可以促进元素的扩散并降低界面能,从而促使γ'相颗粒迅速粗化[36]

图4

图4   LPBF制备GH4099合金样品经SA1-750、SA1-800、SA1-850和SA2-750热处理后γ'相的微观组织

Fig.4   Microstructures of γ' phase in the GH4099 alloy samples fabricated by LPBF after SA1-750 (a), SA1-800 (b), SA1-850 (c), and SA2-750 (d) heat treatments


表2   不同热处理后LPBF制备GH4099合金样品中的γ'相尺寸和力学性能

Table 2  γ' phase sizes and mechanical properties of the GH4099 alloy samples fabricated by LPBF after different heat treatments

Sampled / nmσb / MPaδ / %
SA1-75021 ± 5498 ± 1214.4 ± 3
SA1-80033 ± 7456 ± 815.2 ± 1
SA1-85060 ± 10390 ± 1018.9 ± 4
SA2-75015 ± 4463 ± 729.7 ± 2

Note:dγ' phase diameter, σb—ultimate tensile strength, δ—elongation

新窗口打开| 下载CSV


图4d所示,经SA2-750制度热处理后样品中的γ'相呈现平均尺寸为(15 ± 4) nm的弥散分布的超细高密度球形。如表2所示,与SA1-750热处理样品相比,虽然采用相同的时效热处理制度,但SA2-750热处理样品中γ'相的尺寸减小了29%,这表明不同固溶热处理后的微观组织特征会影响γ'相在后续时效处理中的析出行为。为了证实这一推测,采用DSC研究了γ'相的析出行为,即分别在1100和1150 ℃下保温与S1和S2相同比例的时间(10和15 min),然后以10 ℃/min的速率缓慢冷却,DSC曲线如图5所示。可以看出,在冷却曲线上存在一个明显的因γ'相析出而导致的放热峰,并可以确定γ'相的快速析出温度范围为888~940 ℃。此外,随着固溶温度的升高,放热峰向较低温度移动,峰面积减小,这表明在此情况下,γ'相的析出减缓。已有研究[37]表明γ"相放热峰会随着冷轧程度的增加而移动,即基体变形程度的增加可以促进γ"相形核,从而促进IN718中γ"相的析出,Qin[38]的研究结果也观察到了类似的现象,即外力显著促进了γ"相的成核。如图2b所示,样品经S1固溶热处理后未发生明显的再结晶,这意味着与S2热处理后的样品相比,晶粒内部仍然储存了大量的畸变能。因此,可以合理地推测,晶粒中储存的能量(主要是LPBF制备样品中残余应力引起的畸变能)在随后的时效处理过程中对促进GH4099合金中γ'相的析出和粗化也起到了重要作用,进而影响了最终微观组织中γ'相的尺寸。

图5

图5   不同热处理后LPBF制备GH4099合金样品的DSC曲线

Fig.5   DSC curves of GH4099 alloy samples fabricated by LPBF after different heat treatments


晶粒的再结晶程度和残余塑性应变可通过晶粒取向分布(grain orientation spread,GOS)图反映[14,39]。当GOS值小于1°,可认为晶粒发生了完全再结晶[40]。经S1和S2处理后样品的GOS图分别如图6ab所示。可见,S1和S2处理后样品中再结晶晶粒的面积分数分别为6%和86%。虽然S1工艺广泛用于传统制造GH4099合金的固溶热处理,但其很难促进LPBF成形GH4099合金的再结晶,即无法消除元素微偏析、柱状晶等非平衡态微观组织。这主要是由于LPBF成形样品中存在多尺度异质结构,如亚晶粒、元素微偏析等,使得LPBF工艺制备的GH4099合金晶粒表现出较高的热稳定性。经过S2处理的样品,晶粒再结晶使得残余应力释放和畸变减小,从而降低了基体内部的储能,这意味着在随后的时效热处理过程中,γ'相生长的驱动力将减小。因此,与经过SA1-750处理的样品相比,经过SA2-750处理的样品中的γ'相尺寸较小。此外,这也是导致DSC曲线中γ'相放热峰移动的主要原因。

图6

图6   S1和S2热处理后LPBF制备GH4099合金样品的晶粒取向分布(GOS)图、晶粒GOS值统计图和晶界取向差分布图

Fig.6   Grain orientation spread (GOS) maps (a, b), GOS value statistics (c, d), and grain misorientation angle fractions (e, f) in the GH4099 alloy samples fabriated by LPBF after S1 (a, c, e) and S2 (b, d, f) heat treatments (LAGB—low angle grain boundary, TB—twin boundary)


2.2 热处理对高温力学性能的影响

图7a为经不同热处理制度处理后LPBF制备GH4099合金在900 ℃拉伸的应力-应变曲线,相应的拉伸性能也列于表2中。由图7a表2可见,SA1-750样品的抗拉强度最高,为(498 ± 12) MPa,延伸率最低,仅为(14.4 ± 3)%。随着时效温度的升高,强度降低,但延伸率增加。采用SA1-850方案对样品进行热处理时,其抗拉强度降至(390 ± 10) MPa,但伸长率则增至(18.9 ± 4)%。从表2中的γ'相尺寸可以看出,GH4099合金的强度与γ'相的尺寸密切相关,即小尺寸、高密度的γ'相有利于合金强度的提高。虽然随着时效温度的升高,合金的延伸率会略有提高,但会造成强度的下降。经过SA1-750、SA1-800 和 SA1-850处理后,LPBF制备的GH4099延伸率仍远低于GH4099热轧合金的延伸率(≥ 28%[41])。高温塑性不足也是LPBF制备镍基合金普遍存在的问题[42]

图7

图7   不同热处理制度处理后LPBF制备GH4099合金样品在900 ℃拉伸的应力-应变曲线及其与文献[16,39,43~45]报道的LPBF制备镍基高温合金在900 ℃下拉伸性能的比较

Fig.7   Stress-strain curves of GH4099 alloy samples fabricated by LPBF after different heat treatments tested at 900 oC (a) and comparisons of tensile properties at 900 oC between this work and those of LPBF fabricated nickel-based super-alloys reported in literatures [16,39,43-45] (b)


经SA2-750工艺热处理后,样品的延伸率提高到(29.7 ± 2)%,可达到GH4099热轧合金标准所需的延伸率要求。与经过SA1-750处理后的样品相比,虽然经SA2-750处理后样品的抗拉强度降低了7%,但其高温延伸率却显著提高了106%。与通常用于传统的锻造和轧制GH4099合金热处理的SA1-800方案相比,可以发现经SA2-750处理后样品的强度与SA1-800处理样品的强度接近,而延伸率则明显提高。综合比较上述结果可以看出,SA2-750热处理方案更适合LPBF制备GH4099 合金的后续热处理。图7b对比了几种常用镍基合金在900 ℃时的高温力学性能。可以看出,本工作LPBF制备GH4099合金的高温力学性能介于具有高含量γ'相的高强镍基合金和固溶强化型镍基合金之间。这归因于本工作LPBF制备GH4099合金中适量的γ'相形成元素Al、Ti,使得在析出γ'相强化合金的同时,不至于造成塑性的过度损失。此外,经SA2-750处理后的GH4099合金力学性能明显高于专用于增材制造的ABD850AM镍基合金[16]。这表明LPBF制备的GH4099合金在需要兼顾强度和塑性的热端部件中具有巨大的应用潜力。由上述分析可知,热处理后LPBF制备GH4099合金微观组织的差异可以直接反映在高温拉伸性能上。一方面,晶格畸变和晶内取向差的降低会使晶粒变得“更软”,减少了位错运动的阻碍;另一方面,再结晶后等轴晶的塑性变形协调能力高于柱状晶[46]。综合这些因素,经过SA2-750处理后样品的高温塑性得到有效提升。虽然应变强化对强度的贡献会随着晶粒的再结晶而减弱[47],但在随后的时效处理过程中,γ'相尺寸的细化可以弥补强度的降低。因此,经过SA2-750处理的样品不仅具有优异的延伸率,而且还能保持较高的强度。

此外,晶界特征也与高温力学性能密切相关。从图6a可见,经S1固溶处理后的样品中可以观察到晶粒内部存在大量LAGB,占晶界总含量的27.6% (图6e)。虽然LAGB可以延缓位错的滑移以提高强度,但LAGB的存在意味着样品中仍存在残余应力和局域取向差的累积,这将导致不均匀变形,进而降低样品的延伸率[30]。另一方面,S2固溶处理后的样品中孪晶界的占比高达59.4%,孪晶界具有比随机晶界更低的界面能,可以破坏随机晶界网络的连通性,阻碍变形过程中裂纹的拓展[48,49]。此外,孪晶界还可以阻碍位错运动,协调位错在晶粒间的滑移,从而缓解随机晶界的应力集中,起到保持塑性的同时提高强度的作用[29,30]。因此,高比例的孪晶界有利于提高LPBF制备GH4099合金的综合力学性能。

2.3 热处理后样品的高温断裂机理

图8为经SA1-750和SA2-750热处理后LPBF制备GH4099样品的高温拉伸断裂特征。可以看出,裂纹主要分布在垂直于拉伸方向的晶界(图8ab),断裂面呈现典型的晶界撕裂特征(图8cd),表明这2种样品的断裂机制均为沿晶断裂。随着温度的升高,晶界强度比晶内强度以更快的速率降低[50,51],晶内和晶界的等强温度一般为0.5Tm (Tm指合金的熔点),GH4099合金的熔点约为1390 ℃,由此可得其等强温度约为700 ℃,远低于本工作高温拉伸的实验温度。因此,具有较低强度的晶界成为优先失效部位。如图8ab中插图所示,在2个样品的断口裂纹中均观察到了M23C6碳化物的存在,这表明在900 ℃下晶界M23C6会促进沿晶裂纹的产生,从而降低样品的延伸率[50]。如图3所示,M23C6碳化物的尺寸和含量取决于固溶处理方案,这表明固溶热处理方案对GH4099 合金的最终失效同样起到重要的影响。

图8

图8   SA1-750和SA2-750热处理后LPBF制备GH4099合金拉伸样品断口及纵截面微观形貌的SEM像

Fig.8   SEM images of the longitudinal (a, b) and transverse (c, d) sections of the fracture in GH4099 alloy samples fabricated by LPBF after SA1-750 (a, c) and SA2-750 (b, d) heat treatments (Insets in Figs.8a and b show the M23C6 carbides at grain boundary)


为进一步澄清LPBF制备GH4099合金的高温断裂机理,对高温拉伸后的样品进行了EBSD分析。图9a为SA2-750处理后样品沿拉伸方向显微组织的反极图。可见,裂纹主要分布在随机晶界位置,而孪晶界处未观察到裂纹的存在。从图9b的内核平均取向差(kernel average misorientation,KAM)图可以看出,随机晶界处存在明显的应力集中,这意味着在高温变形时随机晶界会因应力集中而优先开裂。从本质上讲,应力集中是由于局部位错运动受到阻碍所导致[52,53]。如图9c的TEM像所示,在晶界M23C6碳化物前沿积累了大量的缠结位错。在室温下,晶界强度高于晶内强度,碳化物阻碍位错运动所导致的应力集中可以通过激活相邻晶粒的滑移来缓解[54]。相反,当温度高于等强温度时,晶界处的应力集中尚未达到激活相邻晶粒滑移的临界值,晶粒通过相对滑移和旋转来协调变形,因此碳化物引起的应力集中将导致裂纹在晶界迅速萌生[22]。在采用S1固溶处理的样品中,随机晶界处的M23C6含量较高,在高温变形过程中更可能导致晶界处裂纹的萌生。此外,相比于随机晶界,具有更低能量的孪晶界可以抑制碳化物的析出,而且在拉伸变形后也未发现裂纹(图9a)。因此,增加GH4099合金中孪晶界的比例可以延缓高温变形过程中的沿晶开裂。

图9

图9   SA2-750处理样品经高温拉伸后的反极图和内核平均取向差分布图,晶界处位错与M23C6碳化物之间相互作用及晶粒内位错与γ'相之间相互作用的TEM像

Fig.9   IPF (a) and kernel average misorientation (KAM) map (b) of SA2-750 treated sample after tensile at elevated temperature; TEM images representing the interaction between dislocations and M23C6 carbides at grain boundary (c) and the interaction between dislocation and γ' phase within grains (d) (Insets in Fig.9d show the high magnification TEM image and corresponding TEM dark field image)


除晶界特征分布和碳化物分布的影响,γ'相与位错的相互作用同样与最终的失效密切相关。如图9d所示,在晶粒内部观察到了高密度位错,主要为位错环和弯折的位错线(如插图中箭头所示),这说明样品在900 ℃塑性变形过程中,位错运动是以剪切和Orowan绕过模式穿过γ'相。研究[55,56]表明,随着γ'相尺寸的增大,位错-γ'相的相互作用将从剪切转变为绕过,且绕过机制所产生的应变硬化程度低于剪切机制。因此,随着γ'相的粗化,强度和延展性之间会出现倒置,这与图7a中随着时效温度升高,样品强度降低但塑性升高的结果相对应。此外,如图9d中插图的TEM暗场像所示,SA2-750处理后的样品经900 ℃拉伸后,γ'相粗化至(40 ± 10) nm。高温拉伸过程中γ'相的粗化使GH4099合金中的位错能够以剪切和绕过2种模式运动,进而获得适当的应变硬化,同时也可缓解SA2-750热处理后因析出细小γ'相所导致的强度和塑性的倒置。

3 结论

(1) 固溶热处理不仅影响LPBF制备GH4099合金的再结晶行为和碳化物的析出,还会对后续时效热处理过程中γ'相的析出产生影响。经1150 ℃固溶热处理1.5 h可以促进LPBF制备GH4099合金的再结晶,并抑制M23C6碳化物的析出。此外,固溶处理后晶粒的再结晶释放了LPBF成形合金晶粒内部储存的畸变能,进而减缓了后续时效处理过程中γ'相的析出。

(2) LPBF制备GH4099合金中γ'相的尺寸随着后续时效温度的升高而增大,导致高温强度降低,但塑性提高。得益于晶粒的再结晶以及碳化物和γ'相的细化,LPBF制备GH4099合金在经过SA2-750热处理后,在900 ℃拉伸时表现出优异的强度和塑性组合。

(3) 通过升高固溶热处理温度来促进LPBF制备GH4099合金晶粒再结晶,所生成的孪晶可起到分割和细化晶粒的作用。高比例的孪晶界可抑制晶间碳化物的析出,缓解随机晶界的应力集中,从而有效克服LPBF制备镍基合金高温塑性不足的弊端。

参考文献

Yang B, Shang Z, Ding J, et al.

Investigation of strengthening mechanisms in an additively manufactured Haynes 230 alloy

[J]. Acta Mater., 2022, 222: 117404

[本文引用: 1]

Sun S S, Teng Q, Xie Y, et al.

Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility

[J]. Addit. Manuf., 2021, 46: 102168

[本文引用: 2]

Hosseini E, Popovich V A.

A review of mechanical properties of additively manufactured Inconel 718

[J]. Addit. Manuf., 2019, 30: 100877

[本文引用: 2]

Song B, Zhang J L, Zhang Y J, et al.

Research progress of materials design for metal laser additive manufacturing

[J]. Acta Metall. Sin., 2023, 59: 1

DOI      [本文引用: 1]

Laser additive manufacturing is widely recognized to be an effective method to form complicated and custom metallic components. The existing research on metal additive manufacturing utilizes traditional alloy grades, which are designed based on the assumption that solidification occurs at equilibrium; thus, these materials are not well suited to the nonequilibrium metallurgical dynamics that are present in additive manufacturing techniques. Common issues, such as high crack susceptibility, low toughness, and low fatigue capability, as well as anisotropy, frequently occur during the fabrication of additively manufactured metallic parts. It is therefore necessary to conduct research on the design of new materials designed specifically for laser additive manufacturing in order to fully realize the potential advantages and value of the ultrafast solidification conditions. In this article, the technical bottlenecks, material design methods, and the development of new materials that are applicable to laser additively manufactured metal materials are reviewed; these materials include aluminum alloys, titanium alloys, iron-based alloys, and magnesium alloys. Finally, the potential future direction of research related to laser metal additive manufacturing is discussed.

宋 波, 张金良, 章媛洁 .

金属激光增材制造材料设计研究进展

[J]. 金属学报, 2023, 59: 1

[本文引用: 1]

Martin J H, Yahata B D, Hundley J M, et al.

3D printing of high-strength aluminium alloys

[J]. Nature, 2017, 549: 365

[本文引用: 1]

Yang X, Wang B, Gu W P, et al.

Application and research status of numerical simulation of metal laser 3D printing process

[J]. J. Mater. Eng., 2021, 49(4): 52

DOI      [本文引用: 1]

Numerical simulation can establish corresponding models for temperature field, molten pool shape, residential stress, microstructure evolution in the metal SLM process effectively. Meanwhile this model can accurately predict the performance of forming parts, and provide scientific basis for process parameters optimization, consequently boost the metal SLM to industry application. In this paper, the latest research progress of numerical simulation in the process of metal laser additive manufacturing was summarized, including temperature field, molten pool dynamics, residual stress and deformation in the forming part, and microstructure change.The latest progress of numerical simulation in metal SLM process was summarized, and the metal SLM process was analyzed. Finally, the future development trend was put forward that metal SLM process numerical simulation should be combined with big data, artificial intelligence, deep learning and other technologies and numerical simulation accuracy will be further improved,the processing window of metal laser additive manufacturing will be broadened,and guidance will be provided for the development of individual products.

杨 鑫, 王 犇, 谷文萍 .

金属激光3D打印过程数值模拟应用及研究现状

[J]. 材料工程, 2021, 49(4): 52

[本文引用: 1]

Sun Z J, Tan X P, Tor S B, et al.

Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting

[J]. npg Asia Mater., 2018, 10: 127

[本文引用: 1]

Chen Y, Guo Y B, Xu M J, et al.

Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and Gaussian distribution laser

[J]. Mater. Sci. Eng., 2019, A754: 339

Nadammal N, Mishurova T, Fritsch T, et al.

Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing

[J]. Addit. Manuf., 2021, 38: 101792

[本文引用: 1]

Liu L F, Ding Q Q, Zhong Y, et al.

Dislocation network in additive manufactured steel breaks strength-ductility trade-off

[J]. Mater. Today, 2018, 21: 354

[本文引用: 1]

Voisin T, Forien J B, Perron A, et al.

New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion

[J]. Acta Mater., 2021, 203: 116476

[本文引用: 1]

Zhao Y N, Guo Q Y, Ma Z Q, et al.

Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties

[J]. Mater. Sci. Eng., 2020, A791: 139735

[本文引用: 1]

Kok Y, Tan X P, Wang P, et al.

Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review

[J]. Mater. Des., 2018, 139: 565

[本文引用: 1]

Zhao Y H, Li K, Gargani M, et al.

A comparative analysis of Inconel 718 made by additive manufacturing and suction casting: Microstructure evolution in homogenization

[J]. Addit. Manuf., 2020, 36: 101404

[本文引用: 2]

Wei B, Liu Z M, Nong B Z, et al.

Microstructure, cracking behavior and mechanical properties of René 104 superalloy fabricated by selective laser melting

[J]. J. Alloys Compd., 2021, 867: 158377

[本文引用: 1]

Tang Y T, Panwisawas C, Ghoussoub J N, et al.

Alloys-by-design: Application to new superalloys for additive manufacturing

[J]. Acta Mater., 2021, 202: 417

[本文引用: 3]

Cloots M, Uggowitzer P J, Wegener K.

Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles

[J]. Mater. Des., 2016, 89: 770

[本文引用: 1]

Chang K, Ma L, Li P T, et al.

Effect of heat treatment on microstructure and mechanical properties of GH4099 superalloy fabricated by selective laser melting

[J]. J. Alloys Compd., 2023, 934: 167813

[本文引用: 2]

Harte A, Atkinson M, Smith A, et al.

The effect of solid solution and gamma prime on the deformation modes in Ni-based superalloys

[J]. Acta Mater., 2020, 194: 257

[本文引用: 1]

Li J, Ding R, Guo Q Y, et al.

Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI 718Plus

[J]. Mater. Sci. Eng., 2021, A812: 141113

[本文引用: 1]

Zhang P, Yuan Y, Yin H, et al.

Tensile properties and deformation mechanisms of Haynes 282 at various temperatures

[J]. Metall. Mater. Trans., 2018, 49A: 1571

[本文引用: 1]

Hu R, Bai G H, Li J S, et al.

Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni-Cr-W based superalloy

[J]. Mater. Sci. Eng., 2012, A548: 83

[本文引用: 2]

Dong R F, Li J S, Zhang T B, et al.

Elements segregation and phase precipitation behavior at grain boundary in a Ni-Cr-W based superalloy

[J]. Mater. Charact., 2016, 122: 189

[本文引用: 2]

Tang Y T, Panwisawas C, Jenkins B M, et al.

Multi-length-scale study on the heat treatment response to supersaturated nickel-based superalloys: Precipitation reactions and incipient recrystallisation

[J]. Addit. Manuf., 2023, 62: 103389

[本文引用: 1]

Son K T, Phan T Q, Levine L E, et al.

The creep and fracture properties of additively manufactured inconel 625

[J]. Materialia, 2021, 15: 101021

[本文引用: 1]

Inaekyan K, Kreitcberg A, Turenne S, et al.

Microstructure and mechanical properties of laser powder bed-fused IN625 alloy

[J]. Mater. Sci. Eng., 2019, A768: 138481

Li Y, Kan W B, Zhang Y M, et al.

Microstructure, mechanical properties and strengthening mechanisms of IN738LC alloy produced by electron beam selective melting

[J]. Addit. Manuf., 2021, 47: 102371

[本文引用: 1]

Zhang H B, Zhang K F, Jiang S S, et al.

Dynamic recrystallization behavior of a γ′-hardened nickel-based superalloy during hot deformation

[J]. J. Alloys Compd., 2015, 623: 374

[本文引用: 1]

Gao Y B, Ding Y T, Chen J J, et al.

Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy

[J]. Mater. Sci. Eng., 2019, A767: 1383611

[本文引用: 2]

Lu Y J, Zhao W, Yang C, et al.

Improving mechanical properties of selective laser melted Co29Cr9W3Cu alloy by eliminating mesh-like random high-angle grain boundary

[J]. Mater. Sci. Eng., 2020, A793: 1

[本文引用: 3]

Gao S B, Hu Z H, Duchamp M, et al.

Recrystallization-based grain boundary engineering of 316L stainless steel produced via selective laser melting

[J]. Acta Mater., 2020, 200: 366

[本文引用: 1]

Zhang L, Liu H S, He X B, et al.

Thermal evolution behavior of carbides and γ′ precipitates in FGH96 superalloy powder

[J]. Mater. Charact., 2012, 67: 52

[本文引用: 2]

Wang Y M, Voisin T, McKeown J T, et al.

Additively manufactured hierarchical stainless steels with high strength and ductility

[J]. Nat. Mater., 2018, 17: 63

DOI      PMID      [本文引用: 1]

Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

Bai G H, Hu R, Li J S, et al.

Secondary M23C6 precipitation behavior in Ni-Cr-W based superalloy

[J]. Rare Met. Mater. Eng., 2011, 40: 1737

[本文引用: 1]

柏广海, 胡 锐, 李金山 .

Ni-Cr-W基高温合金二次M23C6析出行为

[J]. 稀有金属材料与工程, 2011, 40: 1737

[本文引用: 1]

Tan Y, You X G, You Q F, et al.

Microstructure and deformation behavior of nickel based superalloy Inconel 740 prepared by electron beam smelting

[J]. Mater. Charact., 2016, 114: 267

[本文引用: 1]

Wang Z Y, Muránsky O, Zhu H L, et al.

On the kinetics of gamma prime (γ') precipitation and its strengthening mechanism in alloy 617 during a long-term thermal aging

[J]. Materialia, 2020, 11: 100682

[本文引用: 1]

Mei Y P, Liu Y C, Liu C X, et al.

Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy

[J]. J. Alloys Compd., 2015, 649: 949

[本文引用: 1]

Qin H L, Bi Z N, Yu H Y, et al.

Influence of stress on γ″ precipitation behavior in Inconel 718 during aging

[J]. J. Alloys Compd., 2018, 740: 997

[本文引用: 1]

Bober D B, Lind J, Mulay R P, et al.

The formation and characterization of large twin related domains

[J]. Acta Mater., 2017, 129: 500

[本文引用: 3]

Kumar N.

An exploration of microstructural in-homogeneity in the 6082 Al alloy processed through room temperature multi-axial forging

[J]. Mater. Charact., 2021, 176: 111134

[本文引用: 1]

Chinese Society of Metals High Temperature Materials Branch. China Superalloys Handbook[M]. Beijing: China Quality Inspection Press, 2012: 599

[本文引用: 1]

中国金属学会高温材料分会. 中国高温合金手册[M]. 北京: 中国质检出版社, 2012: 599

[本文引用: 1]

Gallmeyer T G, Moorthy S, Kappes B B, et al.

Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718

[J]. Addit. Manuf., 2020, 31: 100977

[本文引用: 1]

Zhang Z H, Han Q Q, Liu Z Y, et al.

Influence of the TiB2 content on the processability, microstructure and high-temperature tensile performance of a Ni-based superalloy by laser powder bed fusion

[J]. J. Alloys Compd., 2022, 908: 164656

[本文引用: 2]

Du B N, Hu Z Y, Sheng L Y, et al.

Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy

[J]. J. Mater. Sci. Technol., 2018, 34: 1805

DOI     

The Ni-based K417G superalloy is extensively applied as aeroengine components for its low cost and good mid-temperature (600-900 °C) properties. Since used in as-cast state, the comprehensive understanding on its mechanical properties and microstructure evolution is necessary. In the present research, the tensile, creep behavior and microstructure evolution of the as-cast K417G superalloy under different conditions were investigated. The results exhibit that tensile cracks tend to initiate at MC carbide and γ/γ′ eutectic structure and then propagate along grain boundary. As the temperature for tensile tests increases from 21 °C to 700 °C, the yield strength and ultimate tensile strength of K417G superalloy decreases slightly, while the elongation to failure decreases greatly because of the intermediate temperature embrittlement. When the temperature rises to 900 °C, the yield strength and ultimate tensile strength would decrease significantly. The creep deformation mechanism varies under different testing conditions. At 760 °C/645 MPa, the creep cracks initiate at MC carbides and γ/γ′ eutectic structures, and propagate transgranularly. While at 900 °C/315 MPa and 950 °C/235 MPa, the creep cracks initiate at grain boundary and propagate intergranularly. As the creep condition changes from 760 °C/645 MPa to 900 °C/315 MPa and 950 °C/235 MPa, the γ′ phase starts to raft, which reduces the creep deformation resistance and increases the steady-state deformation rate.

de Oliveira M M, Couto A A, Almeida G F C, et al.

Mechanical behavior of Inconel 625 at elevated temperatures

[J]. Metals, 2019, 9: 301

[本文引用: 2]

Hu Y L, Li Y L, Zhang S Y, et al.

Effect of solution temperature on static recrystallization and ductility of Inconel 625 superalloy fabricated by directed energy deposition

[J]. Mater. Sci. Eng., 2020, A772: 138711

[本文引用: 1]

Hu Y L, Lin X, Zhang S Y, et al.

Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming

[J]. J. Alloys Compd., 2018, 767: 330

[本文引用: 1]

McCarley J, Helmink R, Goetz R, et al.

Grain boundary engineering of a low stacking fault energy Ni-based Superalloy

[J]. Metall. Mater. Trans., 2017, 48A: 1666

[本文引用: 1]

Hu Z P, Guan K, Qian Z, et al.

Simultaneous enhancement of strength and ductility in selective laser melting manufactured 316L alloy by employing Y2O3 coated spherical powder as precursor

[J]. J. Alloys Compd., 2022, 899: 163262

[本文引用: 1]

Németh A A N, Crudden D J, Armstrong D E J, et al.

Environmentally-assisted grain boundary attack as a mechanism of embrittlement in a nickel-based superalloy

[J]. Acta Mater., 2017, 126: 361

[本文引用: 2]

Zheng L, Schmitz G, Meng Y, et al.

Mechanism of intermediate temperature embrittlement of Ni and Ni-based superalloys

[J]. Crit. Rev. Solid State Mater. Sci., 2012, 37: 181

[本文引用: 1]

Bahl S, Plotkowski A, Sisco K, et al.

Elevated temperature ductility dip in an additively manufactured Al-Cu-Ce alloy

[J]. Acta Mater., 2021, 220: 117285

[本文引用: 1]

Lei Y C, Aoyagi K, Aota K, et al.

Critical factor triggering grain boundary cracking in non-weldable superalloy Alloy713ELC fabricated with selective electron beam melting

[J]. Acta Mater., 2021, 208: 116695

[本文引用: 1]

Hrutkay K, Kaoumi D.

Tensile deformation behavior of a nickel based superalloy at different temperatures

[J]. Mater. Sci. Eng., 2014, A599: 196

[本文引用: 1]

Shin K Y, Kim J H, Terner M, et al.

Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy

[J]. Mater. Sci. Eng., 2019, A751: 311

[本文引用: 1]

Zhong Z H, Gu Y F, Yuan Y, et al.

Tensile properties and deformation characteristics of a Ni-Fe-base superalloy for steam boiler applications

[J]. Metall. Mater. Trans., 2013, 45A: 343

[本文引用: 1]

/