Corresponding authors:MA Zongqing, professor, Tel: 13702124121, E-mail:zqma@tju.edu.cn
Received:2024-06-17Revised:2024-07-29
Fund supported:
National Natural Science Foundation of China(U22A20172) National Natural Science Foundation of China(52122409) National Key Research and Development Program of China(2023YFB3712002)
The multi-dimensional, multi-scale forming characteristics of laser powder bed fusion (LPBF) 3D printing technology, combined with its complex non-equilibrium solidification process, result in multilayered microstructures that differ significantly from those produced by traditional manufacturing methods. However, it is challenging to apply existing heat treatment solutions, developed for conventional manufacturing processes, to LPBF. Therefore, a tailored heat treatment approach is required for LPBF-printed components to regulate their microstructure and properties effectively. This study investigated the modulation mechanism of subsequent heat treatment on the non-equilibrium microstructure and high-temperature mechanical properties of 3D-printed GH4099 superalloy produced via LPBF. The findings reveal that solution treatment influences the recrystallization behavior of the printed microstructure and the precipitation behavior of carbides and γ' phases, which play critical roles in determining the alloy's high-temperature elongation. The multi-scale heterogeneous structure in the LPBF-fabricated GH4099 alloy enhances its microstructural thermal stability beyond that of conventional castings and forgings. Consequently, a high solution heat treatment temperature is necessary to achieve complete recrystallization. Following solution treatment at 1150 oC for 1.5 h, the columnar grains in the GH4099 prints were transformed into equiaxed grains, and large size twins were formed. Additionally, the precipitation of M23C6 carbides at the grain boundaries was suppressed. During subsequent aging heat treatment, the recrystallization induced by the solution treatment mitigated the distortion energy stored in the 3D-printed grains, thereby suppressing γ' phase precipitation in the matrix. As a result, by optimizing the heat treatment process, a favorable balance between high-temperature strength and plasticity was achieved in the GH4099 alloy.
Keywords:laser powder bed fusion;
non-equilibrium microstructure;
heat treatment;
γ' phase;
high- temperature mechanical property
ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. Acta Metallurgica Sinica, 2025, 61(1): 165-176 DOI:10.11900/0412.1961.2024.00208
镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3]。随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求。激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4]。在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9]。非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能。例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效。此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12]。外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13]。热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14]。因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系。
Fig.2
Inverse pole figures (IPFs) of GH4099 alloy sample fabricated by LPBF (a) and after S1 (b) and S2 (c) solution heat treatments, and the variations in the size of grains as well as the hardness with solution heat treatment (d) (BD—build direction)
Fig.3
SEM images and EDX analysis results (insets) of grain boundary precipitation phases in the GH4099 alloy samples fabricated by LPBF after S1 (a) and S2 (b) solution treatments (w—mass fraction, a—atomic fraction)
Fig.4
Microstructures of γ' phase in the GH4099 alloy samples fabricated by LPBF after SA1-750 (a), SA1-800 (b), SA1-850 (c), and SA2-750 (d) heat treatments
Table 2
表2
表2不同热处理后LPBF制备GH4099合金样品中的γ'相尺寸和力学性能
Table 2 γ' phase sizes and mechanical properties of the GH4099 alloy samples fabricated by LPBF after different heat treatments
Fig.7
Stress-strain curves of GH4099 alloy samples fabricated by LPBF after different heat treatments tested at 900 oC (a) and comparisons of tensile properties at 900 oC between this work and those of LPBF fabricated nickel-based super-alloys reported in literatures [16,39,43-45] (b)
Fig.8
SEM images of the longitudinal (a, b) and transverse (c, d) sections of the fracture in GH4099 alloy samples fabricated by LPBF after SA1-750 (a, c) and SA2-750 (b, d) heat treatments (Insets in Figs.8a and b show the M23C6 carbides at grain boundary)
为进一步澄清LPBF制备GH4099合金的高温断裂机理,对高温拉伸后的样品进行了EBSD分析。图9a为SA2-750处理后样品沿拉伸方向显微组织的反极图。可见,裂纹主要分布在随机晶界位置,而孪晶界处未观察到裂纹的存在。从图9b的内核平均取向差(kernel average misorientation,KAM)图可以看出,随机晶界处存在明显的应力集中,这意味着在高温变形时随机晶界会因应力集中而优先开裂。从本质上讲,应力集中是由于局部位错运动受到阻碍所导致[52,53]。如图9c的TEM像所示,在晶界M23C6碳化物前沿积累了大量的缠结位错。在室温下,晶界强度高于晶内强度,碳化物阻碍位错运动所导致的应力集中可以通过激活相邻晶粒的滑移来缓解[54]。相反,当温度高于等强温度时,晶界处的应力集中尚未达到激活相邻晶粒滑移的临界值,晶粒通过相对滑移和旋转来协调变形,因此碳化物引起的应力集中将导致裂纹在晶界迅速萌生[22]。在采用S1固溶处理的样品中,随机晶界处的M23C6含量较高,在高温变形过程中更可能导致晶界处裂纹的萌生。此外,相比于随机晶界,具有更低能量的孪晶界可以抑制碳化物的析出,而且在拉伸变形后也未发现裂纹(图9a)。因此,增加GH4099合金中孪晶界的比例可以延缓高温变形过程中的沿晶开裂。
Fig.9
IPF (a) and kernel average misorientation (KAM) map (b) of SA2-750 treated sample after tensile at elevated temperature; TEM images representing the interaction between dislocations and M23C6 carbides at grain boundary (c) and the interaction between dislocation and γ' phase within grains (d) (Insets in Fig.9d show the high magnification TEM image and corresponding TEM dark field image)
Laser additive manufacturing is widely recognized to be an effective method to form complicated and custom metallic components. The existing research on metal additive manufacturing utilizes traditional alloy grades, which are designed based on the assumption that solidification occurs at equilibrium; thus, these materials are not well suited to the nonequilibrium metallurgical dynamics that are present in additive manufacturing techniques. Common issues, such as high crack susceptibility, low toughness, and low fatigue capability, as well as anisotropy, frequently occur during the fabrication of additively manufactured metallic parts. It is therefore necessary to conduct research on the design of new materials designed specifically for laser additive manufacturing in order to fully realize the potential advantages and value of the ultrafast solidification conditions. In this article, the technical bottlenecks, material design methods, and the development of new materials that are applicable to laser additively manufactured metal materials are reviewed; these materials include aluminum alloys, titanium alloys, iron-based alloys, and magnesium alloys. Finally, the potential future direction of research related to laser metal additive manufacturing is discussed.
Numerical simulation can establish corresponding models for temperature field, molten pool shape, residential stress, microstructure evolution in the metal SLM process effectively. Meanwhile this model can accurately predict the performance of forming parts, and provide scientific basis for process parameters optimization, consequently boost the metal SLM to industry application. In this paper, the latest research progress of numerical simulation in the process of metal laser additive manufacturing was summarized, including temperature field, molten pool dynamics, residual stress and deformation in the forming part, and microstructure change.The latest progress of numerical simulation in metal SLM process was summarized, and the metal SLM process was analyzed. Finally, the future development trend was put forward that metal SLM process numerical simulation should be combined with big data, artificial intelligence, deep learning and other technologies and numerical simulation accuracy will be further improved,the processing window of metal laser additive manufacturing will be broadened,and guidance will be provided for the development of individual products.
Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and Gaussian distribution laser
[J]. Mater. Sci. Eng., 2019, A754: 339
NadammalN, MishurovaT, FritschT, et al.
Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing
New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion
Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties
Multi-length-scale study on the heat treatment response to supersaturated nickel-based superalloys: Precipitation reactions and incipient recrystallisation
Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.
BaiG H, HuR, LiJ S, et al.
Secondary M23C6 precipitation behavior in Ni-Cr-W based superalloy
Influence of the TiB2 content on the processability, microstructure and high-temperature tensile performance of a Ni-based superalloy by laser powder bed fusion
The Ni-based K417G superalloy is extensively applied as aeroengine components for its low cost and good mid-temperature (600-900 °C) properties. Since used in as-cast state, the comprehensive understanding on its mechanical properties and microstructure evolution is necessary. In the present research, the tensile, creep behavior and microstructure evolution of the as-cast K417G superalloy under different conditions were investigated. The results exhibit that tensile cracks tend to initiate at MC carbide and γ/γ′ eutectic structure and then propagate along grain boundary. As the temperature for tensile tests increases from 21 °C to 700 °C, the yield strength and ultimate tensile strength of K417G superalloy decreases slightly, while the elongation to failure decreases greatly because of the intermediate temperature embrittlement. When the temperature rises to 900 °C, the yield strength and ultimate tensile strength would decrease significantly. The creep deformation mechanism varies under different testing conditions. At 760 °C/645 MPa, the creep cracks initiate at MC carbides and γ/γ′ eutectic structures, and propagate transgranularly. While at 900 °C/315 MPa and 950 °C/235 MPa, the creep cracks initiate at grain boundary and propagate intergranularly. As the creep condition changes from 760 °C/645 MPa to 900 °C/315 MPa and 950 °C/235 MPa, the γ′ phase starts to raft, which reduces the creep deformation resistance and increases the steady-state deformation rate.
de OliveiraM M, CoutoA A, AlmeidaG F C, et al.
Mechanical behavior of Inconel 625 at elevated temperatures
Simultaneous enhancement of strength and ductility in selective laser melting manufactured 316L alloy by employing Y2O3 coated spherical powder as precursor
Research progress of materials design for metal laser additive manufacturing
1
2023
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
金属激光增材制造材料设计研究进展
1
2023
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
3D printing of high-strength aluminium alloys
1
2017
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
Application and research status of numerical simulation of metal laser 3D printing process
1
2021
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
金属激光3D打印过程数值模拟应用及研究现状
1
2021
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting
1
2018
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and Gaussian distribution laser
0
2019
Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing
1
2021
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
Dislocation network in additive manufactured steel breaks strength-ductility trade-off
1
2018
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion
1
2021
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties
1
2020
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review
1
2018
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
A comparative analysis of Inconel 718 made by additive manufacturing and suction casting: Microstructure evolution in homogenization
2
2020
... 镍基高温合金因其出色的组织稳定性、优异的高温力学性能、抗氧化和抗热腐蚀等特性,在航空发动机、燃气轮机及核电站的关键热端部件中得到了广泛应用[1~3].随着热端部件在超强承载、极端耐热、超轻量化和高可靠性等方面需求的日益增加,传统的减材制造已难以满足新型复杂构件快速开发、验证和制造的需求.激光粉末床熔融(laser powder bed fusion,LPBF)作为重要的增材制造技术之一,为复杂部件结构一体化、轻量化和功能梯度化设计提供了极高的自由度[3,4].在LPBF成形过程中,零件经历高能激光周期性循环加热、快速冷却及短时的非稳态固态相变[5,6]等过程,所制备的样品具有典型的非平衡微观组织特征,如位错亚晶结构、元素微偏析和外延生长的柱状晶等[7~9].非平衡微观组织中含有大量的空位、间隙原子和位错网等,这些缺陷会引起样品中残余应力的累积,并赋予金属材料独特的力学性能.例如,已有研究证实LPBF制备的合金因高密度的原子尺度缺陷所导致的晶格畸变及其对位错运动的阻碍作用而呈现出传统材料难以比拟的强度[10,11],但残余应力的积累会导致塑性损失甚至零件变形失效.此外,元素的微观偏析会促进热暴露过程中偏析相的析出,进而影响构件的服役可靠性[12].外延生长的柱状晶则会造成力学性能的各向异性,导致复杂交变应力服役条件下存在安全隐患[13].热处理被认为是调节LPBF成形合金的非平衡组织和协调力学性能不可或缺的方法[2,14].因此,要实现LPBF制备的镍基合金在高温下的稳定服役,有必要明确热处理制度-非平衡微观结构-高温力学性能之间的关系. ...
Alloys-by-design: Application to new superalloys for additive manufacturing
3
2021
... 图7a为经不同热处理制度处理后LPBF制备GH4099合金在900 ℃拉伸的应力-应变曲线,相应的拉伸性能也列于表2中.由图7a和表2可见,SA1-750样品的抗拉强度最高,为(498 ± 12) MPa,延伸率最低,仅为(14.4 ± 3)%.随着时效温度的升高,强度降低,但延伸率增加.采用SA1-850方案对样品进行热处理时,其抗拉强度降至(390 ± 10) MPa,但伸长率则增至(18.9 ± 4)%.从表2中的γ'相尺寸可以看出,GH4099合金的强度与γ'相的尺寸密切相关,即小尺寸、高密度的γ'相有利于合金强度的提高.虽然随着时效温度的升高,合金的延伸率会略有提高,但会造成强度的下降.经过SA1-750、SA1-800 和 SA1-850处理后,LPBF制备的GH4099延伸率仍远低于GH4099热轧合金的延伸率(≥ 28%[41]).高温塑性不足也是LPBF制备镍基合金普遍存在的问题[42].不同热处理制度处理后LPBF制备GH4099合金样品在900 ℃拉伸的应力-应变曲线及其与文献[<xref ref-type="bibr" rid="R16">16</xref>,<xref ref-type="bibr" rid="R39">39</xref>,<xref ref-type="bibr" rid="R43">43</xref>~<xref ref-type="bibr" rid="R45">45</xref>]报道的LPBF制备镍基高温合金在900 ℃下拉伸性能的比较Stress-strain curves of GH4099 alloy samples fabricated by LPBF after different heat treatments tested at 900 <sup>o</sup>C (a) and comparisons of tensile properties at 900 <sup>o</sup>C between this work and those of LPBF fabricated nickel-based super-alloys reported in literatures [<xref ref-type="bibr" rid="R16">16</xref>,<xref ref-type="bibr" rid="R39">39</xref>,<xref ref-type="bibr" rid="R43">43</xref>-<xref ref-type="bibr" rid="R45">45</xref>] (b)Fig.7
... 为进一步澄清LPBF制备GH4099合金的高温断裂机理,对高温拉伸后的样品进行了EBSD分析.图9a为SA2-750处理后样品沿拉伸方向显微组织的反极图.可见,裂纹主要分布在随机晶界位置,而孪晶界处未观察到裂纹的存在.从图9b的内核平均取向差(kernel average misorientation,KAM)图可以看出,随机晶界处存在明显的应力集中,这意味着在高温变形时随机晶界会因应力集中而优先开裂.从本质上讲,应力集中是由于局部位错运动受到阻碍所导致[52,53].如图9c的TEM像所示,在晶界M23C6碳化物前沿积累了大量的缠结位错.在室温下,晶界强度高于晶内强度,碳化物阻碍位错运动所导致的应力集中可以通过激活相邻晶粒的滑移来缓解[54].相反,当温度高于等强温度时,晶界处的应力集中尚未达到激活相邻晶粒滑移的临界值,晶粒通过相对滑移和旋转来协调变形,因此碳化物引起的应力集中将导致裂纹在晶界迅速萌生[22].在采用S1固溶处理的样品中,随机晶界处的M23C6含量较高,在高温变形过程中更可能导致晶界处裂纹的萌生.此外,相比于随机晶界,具有更低能量的孪晶界可以抑制碳化物的析出,而且在拉伸变形后也未发现裂纹(图9a).因此,增加GH4099合金中孪晶界的比例可以延缓高温变形过程中的沿晶开裂. ...
Elements segregation and phase precipitation behavior at grain boundary in a Ni-Cr-W based superalloy
Multi-length-scale study on the heat treatment response to supersaturated nickel-based superalloys: Precipitation reactions and incipient recrystallisation
... 图7a为经不同热处理制度处理后LPBF制备GH4099合金在900 ℃拉伸的应力-应变曲线,相应的拉伸性能也列于表2中.由图7a和表2可见,SA1-750样品的抗拉强度最高,为(498 ± 12) MPa,延伸率最低,仅为(14.4 ± 3)%.随着时效温度的升高,强度降低,但延伸率增加.采用SA1-850方案对样品进行热处理时,其抗拉强度降至(390 ± 10) MPa,但伸长率则增至(18.9 ± 4)%.从表2中的γ'相尺寸可以看出,GH4099合金的强度与γ'相的尺寸密切相关,即小尺寸、高密度的γ'相有利于合金强度的提高.虽然随着时效温度的升高,合金的延伸率会略有提高,但会造成强度的下降.经过SA1-750、SA1-800 和 SA1-850处理后,LPBF制备的GH4099延伸率仍远低于GH4099热轧合金的延伸率(≥ 28%[41]).高温塑性不足也是LPBF制备镍基合金普遍存在的问题[42].不同热处理制度处理后LPBF制备GH4099合金样品在900 ℃拉伸的应力-应变曲线及其与文献[<xref ref-type="bibr" rid="R16">16</xref>,<xref ref-type="bibr" rid="R39">39</xref>,<xref ref-type="bibr" rid="R43">43</xref>~<xref ref-type="bibr" rid="R45">45</xref>]报道的LPBF制备镍基高温合金在900 ℃下拉伸性能的比较Stress-strain curves of GH4099 alloy samples fabricated by LPBF after different heat treatments tested at 900 <sup>o</sup>C (a) and comparisons of tensile properties at 900 <sup>o</sup>C between this work and those of LPBF fabricated nickel-based super-alloys reported in literatures [<xref ref-type="bibr" rid="R16">16</xref>,<xref ref-type="bibr" rid="R39">39</xref>,<xref ref-type="bibr" rid="R43">43</xref>-<xref ref-type="bibr" rid="R45">45</xref>] (b)Fig.7
Influence of the TiB2 content on the processability, microstructure and high-temperature tensile performance of a Ni-based superalloy by laser powder bed fusion
2
2022
... 图7a为经不同热处理制度处理后LPBF制备GH4099合金在900 ℃拉伸的应力-应变曲线,相应的拉伸性能也列于表2中.由图7a和表2可见,SA1-750样品的抗拉强度最高,为(498 ± 12) MPa,延伸率最低,仅为(14.4 ± 3)%.随着时效温度的升高,强度降低,但延伸率增加.采用SA1-850方案对样品进行热处理时,其抗拉强度降至(390 ± 10) MPa,但伸长率则增至(18.9 ± 4)%.从表2中的γ'相尺寸可以看出,GH4099合金的强度与γ'相的尺寸密切相关,即小尺寸、高密度的γ'相有利于合金强度的提高.虽然随着时效温度的升高,合金的延伸率会略有提高,但会造成强度的下降.经过SA1-750、SA1-800 和 SA1-850处理后,LPBF制备的GH4099延伸率仍远低于GH4099热轧合金的延伸率(≥ 28%[41]).高温塑性不足也是LPBF制备镍基合金普遍存在的问题[42].不同热处理制度处理后LPBF制备GH4099合金样品在900 ℃拉伸的应力-应变曲线及其与文献[<xref ref-type="bibr" rid="R16">16</xref>,<xref ref-type="bibr" rid="R39">39</xref>,<xref ref-type="bibr" rid="R43">43</xref>~<xref ref-type="bibr" rid="R45">45</xref>]报道的LPBF制备镍基高温合金在900 ℃下拉伸性能的比较Stress-strain curves of GH4099 alloy samples fabricated by LPBF after different heat treatments tested at 900 <sup>o</sup>C (a) and comparisons of tensile properties at 900 <sup>o</sup>C between this work and those of LPBF fabricated nickel-based super-alloys reported in literatures [<xref ref-type="bibr" rid="R16">16</xref>,<xref ref-type="bibr" rid="R39">39</xref>,<xref ref-type="bibr" rid="R43">43</xref>-<xref ref-type="bibr" rid="R45">45</xref>] (b)Fig.7
Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy
0
2018
Mechanical behavior of Inconel 625 at elevated temperatures
2
2019
... 图7a为经不同热处理制度处理后LPBF制备GH4099合金在900 ℃拉伸的应力-应变曲线,相应的拉伸性能也列于表2中.由图7a和表2可见,SA1-750样品的抗拉强度最高,为(498 ± 12) MPa,延伸率最低,仅为(14.4 ± 3)%.随着时效温度的升高,强度降低,但延伸率增加.采用SA1-850方案对样品进行热处理时,其抗拉强度降至(390 ± 10) MPa,但伸长率则增至(18.9 ± 4)%.从表2中的γ'相尺寸可以看出,GH4099合金的强度与γ'相的尺寸密切相关,即小尺寸、高密度的γ'相有利于合金强度的提高.虽然随着时效温度的升高,合金的延伸率会略有提高,但会造成强度的下降.经过SA1-750、SA1-800 和 SA1-850处理后,LPBF制备的GH4099延伸率仍远低于GH4099热轧合金的延伸率(≥ 28%[41]).高温塑性不足也是LPBF制备镍基合金普遍存在的问题[42].不同热处理制度处理后LPBF制备GH4099合金样品在900 ℃拉伸的应力-应变曲线及其与文献[<xref ref-type="bibr" rid="R16">16</xref>,<xref ref-type="bibr" rid="R39">39</xref>,<xref ref-type="bibr" rid="R43">43</xref>~<xref ref-type="bibr" rid="R45">45</xref>]报道的LPBF制备镍基高温合金在900 ℃下拉伸性能的比较Stress-strain curves of GH4099 alloy samples fabricated by LPBF after different heat treatments tested at 900 <sup>o</sup>C (a) and comparisons of tensile properties at 900 <sup>o</sup>C between this work and those of LPBF fabricated nickel-based super-alloys reported in literatures [<xref ref-type="bibr" rid="R16">16</xref>,<xref ref-type="bibr" rid="R39">39</xref>,<xref ref-type="bibr" rid="R43">43</xref>-<xref ref-type="bibr" rid="R45">45</xref>] (b)Fig.7
Simultaneous enhancement of strength and ductility in selective laser melting manufactured 316L alloy by employing Y2O3 coated spherical powder as precursor
Elevated temperature ductility dip in an additively manufactured Al-Cu-Ce alloy
1
2021
... 为进一步澄清LPBF制备GH4099合金的高温断裂机理,对高温拉伸后的样品进行了EBSD分析.图9a为SA2-750处理后样品沿拉伸方向显微组织的反极图.可见,裂纹主要分布在随机晶界位置,而孪晶界处未观察到裂纹的存在.从图9b的内核平均取向差(kernel average misorientation,KAM)图可以看出,随机晶界处存在明显的应力集中,这意味着在高温变形时随机晶界会因应力集中而优先开裂.从本质上讲,应力集中是由于局部位错运动受到阻碍所导致[52,53].如图9c的TEM像所示,在晶界M23C6碳化物前沿积累了大量的缠结位错.在室温下,晶界强度高于晶内强度,碳化物阻碍位错运动所导致的应力集中可以通过激活相邻晶粒的滑移来缓解[54].相反,当温度高于等强温度时,晶界处的应力集中尚未达到激活相邻晶粒滑移的临界值,晶粒通过相对滑移和旋转来协调变形,因此碳化物引起的应力集中将导致裂纹在晶界迅速萌生[22].在采用S1固溶处理的样品中,随机晶界处的M23C6含量较高,在高温变形过程中更可能导致晶界处裂纹的萌生.此外,相比于随机晶界,具有更低能量的孪晶界可以抑制碳化物的析出,而且在拉伸变形后也未发现裂纹(图9a).因此,增加GH4099合金中孪晶界的比例可以延缓高温变形过程中的沿晶开裂. ...
Critical factor triggering grain boundary cracking in non-weldable superalloy Alloy713ELC fabricated with selective electron beam melting
1
2021
... 为进一步澄清LPBF制备GH4099合金的高温断裂机理,对高温拉伸后的样品进行了EBSD分析.图9a为SA2-750处理后样品沿拉伸方向显微组织的反极图.可见,裂纹主要分布在随机晶界位置,而孪晶界处未观察到裂纹的存在.从图9b的内核平均取向差(kernel average misorientation,KAM)图可以看出,随机晶界处存在明显的应力集中,这意味着在高温变形时随机晶界会因应力集中而优先开裂.从本质上讲,应力集中是由于局部位错运动受到阻碍所导致[52,53].如图9c的TEM像所示,在晶界M23C6碳化物前沿积累了大量的缠结位错.在室温下,晶界强度高于晶内强度,碳化物阻碍位错运动所导致的应力集中可以通过激活相邻晶粒的滑移来缓解[54].相反,当温度高于等强温度时,晶界处的应力集中尚未达到激活相邻晶粒滑移的临界值,晶粒通过相对滑移和旋转来协调变形,因此碳化物引起的应力集中将导致裂纹在晶界迅速萌生[22].在采用S1固溶处理的样品中,随机晶界处的M23C6含量较高,在高温变形过程中更可能导致晶界处裂纹的萌生.此外,相比于随机晶界,具有更低能量的孪晶界可以抑制碳化物的析出,而且在拉伸变形后也未发现裂纹(图9a).因此,增加GH4099合金中孪晶界的比例可以延缓高温变形过程中的沿晶开裂. ...
Tensile deformation behavior of a nickel based superalloy at different temperatures
1
2014
... 为进一步澄清LPBF制备GH4099合金的高温断裂机理,对高温拉伸后的样品进行了EBSD分析.图9a为SA2-750处理后样品沿拉伸方向显微组织的反极图.可见,裂纹主要分布在随机晶界位置,而孪晶界处未观察到裂纹的存在.从图9b的内核平均取向差(kernel average misorientation,KAM)图可以看出,随机晶界处存在明显的应力集中,这意味着在高温变形时随机晶界会因应力集中而优先开裂.从本质上讲,应力集中是由于局部位错运动受到阻碍所导致[52,53].如图9c的TEM像所示,在晶界M23C6碳化物前沿积累了大量的缠结位错.在室温下,晶界强度高于晶内强度,碳化物阻碍位错运动所导致的应力集中可以通过激活相邻晶粒的滑移来缓解[54].相反,当温度高于等强温度时,晶界处的应力集中尚未达到激活相邻晶粒滑移的临界值,晶粒通过相对滑移和旋转来协调变形,因此碳化物引起的应力集中将导致裂纹在晶界迅速萌生[22].在采用S1固溶处理的样品中,随机晶界处的M23C6含量较高,在高温变形过程中更可能导致晶界处裂纹的萌生.此外,相比于随机晶界,具有更低能量的孪晶界可以抑制碳化物的析出,而且在拉伸变形后也未发现裂纹(图9a).因此,增加GH4099合金中孪晶界的比例可以延缓高温变形过程中的沿晶开裂. ...
Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy