|
|
|
| 低合金高强钢板贝/马复相回火过程硬度及微观组织的演变行为 |
鞠玉琳1( ), 魏琪2, 袁志钟1, 程晓农1 |
1 江苏大学 材料科学与工程学院 镇江 212013 2 中国航空制造技术研究院 先进表面工程技术航空科技重点实验室/高能束流加工技术国家重点实验室 北京 100024 |
|
| Hardness and Microstructural Evolution of Lower Bainite and Martensite Mixtures on Tempering of High-Strength Low-Alloy Steel Plates |
JU Yulin1( ), WEI Qi2, YUAN Zhizhong1, CHENG Xiaonong1 |
1 College of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China 2 Aviation Key Laboratory of Science and Technology on Advanced Surface Engineering/ Science and Technology on Power Beam Process Laboratory, AVIC Manufacturing Technology Institute, Beijing 100024, China |
引用本文:
鞠玉琳, 魏琪, 袁志钟, 程晓农. 低合金高强钢板贝/马复相回火过程硬度及微观组织的演变行为[J]. 金属学报, 2025, 61(10): 1531-1541.
Yulin JU,
Qi WEI,
Zhizhong YUAN,
Xiaonong CHENG.
Hardness and Microstructural Evolution of Lower Bainite and Martensite Mixtures on Tempering of High-Strength Low-Alloy Steel Plates[J]. Acta Metall Sin, 2025, 61(10): 1531-1541.
| [1] |
Chang Y F, Wang Z B, Zhao W Z. Development trend of low alloy high strength heavy and wide plate [J]. Steel, 2007, 42(8): 1
|
| [1] |
常跃峰, 王祖滨, 赵文忠. 低合金高强度宽厚钢板的发展趋势 [J]. 钢铁, 2007, 42(8): 1
|
| [2] |
Zhao J F, Min Y A, Wu X C, et al. Effect of heat treatment on strength and toughness of S890 high strength steel [J]. Trans. Mater. Heat Treat., 2015, 36(5): 129
|
| [2] |
赵洁璠, 闵永安, 吴晓春 等. 不同热处理工艺对S890高强钢强韧性的影响 [J]. 材料热处理学报, 2015, 36(5): 129
|
| [3] |
Kang J, Lu F, Wang Z D, et al. Study on quenching process of 960 MPa quenched and tempered steel plates for construction machinery [J]. J. Northeast. Univ. (Nat. Sci.), 2011, 32: 52
|
| [3] |
康 健, 卢 峰, 王昭东 等. 工程机械用960MPa级调质钢板的淬火工艺研究 [J]. 东北大学学报(自然科学版), 2011, 32: 52
|
| [4] |
Toji Y, Matsuda H, Raabe D. Effect of Si on the acceleration of bainite transformation by pre-existing martensite [J]. Acta Mater., 2016, 116: 250
|
| [5] |
Jiang Z H, Li Y H, Yang Z D, et al. The tempering behavior of martensite/austenite islands on the mechanical properties of a low alloy Mn-Ni-Mo steel with granular bainite [J]. Mater. Today Commun., 2021, 26: 102166
|
| [6] |
Zhao Y T, Lu H T, Wang Y F, et al. Morphologies of martensite and bainite in different steels [J]. J. Iron Steel Res., 2018, 30: 922
|
| [6] |
赵勇桃, 鲁海涛, 王玉峰 等. 不同钢中马氏体与贝氏体组织形貌 [J]. 钢铁研究学报, 2018, 30: 922
doi: 10. 13228/j.boyuan.issn1001- 0963. 20180055
|
| [7] |
Liu D Y, Xu H, Yang K, et al. Effect of bainite/martensite mixed microstructure on the strength and toughness of low carbon alloy steels [J]. Acta Metall. Sin., 2004, 40: 882
|
| [7] |
刘东雨, 徐 鸿, 杨 昆 等. 贝氏体/马氏体复相组织对低碳合金钢强韧性的影响 [J]. 金属学报, 2004, 40: 882
|
| [8] |
Fang H S, Liu D Y, Chang K D, et al. Microstructure and properties of 1500 MPa economical bainite/martensite duplex phase steel [J]. J. Iron Steel Res., 2001, 13(3): 31
|
| [8] |
方鸿生, 刘东雨, 常开地 等. 1500 MPa级经济型贝氏体/马氏体复相钢的组织与性能 [J]. 钢铁研究学报, 2001, 13(3): 31
|
| [9] |
Yuan Z Z, Chen L, Zhang B C, et al. Heat treatment technologies for toughening of cold working die steel DC53 [J]. Heat Treat. Met., 2023, 48(10): 15
|
| [9] |
袁志钟, 陈 露, 张伯承 等. 冷作模具钢DC53热处理增韧技术 [J]. 金属热处理, 2023, 48(10): 15
|
| [10] |
Yuan Z Z, Wang M F, Zhang B C, et al. Heat treatment for toughening technology of cold working die steel SKD11 [J]. Heat Treat. Met., 2023, 48(9): 1
doi: 10.13251/j.issn.0254-6051.2023.09.001
|
| [10] |
袁志钟, 王梦飞, 张伯承 等. 冷作模具钢SKD11的热处理增韧技术 [J]. 金属热处理, 2023, 48(9): 1
doi: 10.13251/j.issn.0254-6051.2023.09.001
|
| [11] |
Caballero F G, Miller M K, Garcia-Mateo C. Influence of transformation temperature on carbide precipitation sequence during lower bainite formation [J]. Mater. Chem. Phys., 2014, 146: 50
|
| [12] |
Tomita Y. Effect of martensite morphology on mechanical properties of low alloy steels having mixed structure of martensite and lower bainite [J]. Mater. Sci. Tech., 1991, 7: 299
|
| [13] |
Ju Y L, Goodall A, Strangwood M, et al. Characterisation of precipitation and carbide coarsening in low carbon low alloy Q&T steels during the early stages of tempering [J]. Mater. Sci. Eng., 2018, A738: 174
|
| [14] |
Thomson R C, Bhadeshia H K D H. Changes in chemical composition of carbides in 2.25Cr-1Mo power plant steel [J]. Mater. Sci. Tech., 1994, 10: 193
|
| [15] |
Thomson R C, Bhadeshia H K D H. Changes in chemical composition of carbides in 2.25Cr-1Mo power plant steel [J]. Mater. Sci. Tech., 1994, 10: 205
|
| [16] |
Zhou L, Shen G X, Xu J. Study on the martensite and lower bainite composite structure of medium carbon low alloy steel [J]. Shanghai Met., 1988, 10(4): 36
|
| [16] |
周 莲, 沈国兴, 徐 杰. 中碳低合金钢的马氏体与下贝氏体复相组织研究 [J]. 上海金属, 1988, 10(4): 36
|
| [17] |
Lin H C. Strengthening and toughening of Cr12 steel with martensite/bainite duplex treatment and its application [J]. Heat Treat. Met., 1997, (5): 11
|
| [17] |
林化春. Cr12钢马氏体-贝氏体复相处理强韧化及应用 [J]. 金属热处理, 1997, (5): 11
|
| [18] |
Bhadeshia H K D H. Bainite in Steels: Theory and Practice [M]. 3rd Ed., London: CRC Press, 2015: 12
|
| [19] |
Tomita Y, Okabayashi K. Heat treatment for improvement in lower temperature mechanical properties of 0.40 pct C-Cr-Mo ultrahigh strength steel [J]. Metall. Trans., 1983, 14A: 2387
|
| [20] |
Tomita Y, Okabayashi K. Improvement in lower temperature mechanical properties of 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite [J]. Metall. Trans., 1983, 14A: 485
|
| [21] |
Yang F B, Bai B Z, Liu D Y, et al. Microstructure and properties of a carbide-free bainite/martensite ultra-high strength steel [J]. Acta Metall. Sin., 2004, 40: 296
|
| [21] |
杨福宝, 白秉哲, 刘东雨 等. 无碳化物贝氏体马氏体复相高强度钢的组织与性能 [J]. 金属学报, 2004, 40: 296
|
| [22] |
Young C H, Bhadeshia H K D H. Strength of mixtures of bainite and martensite [J]. Mater. Sci. Tech., 1994, 10: 209
|
| [23] |
Jain D, Isheim D, Seidman D N. Carbon redistribution and carbide precipitation in a high-strength low-carbon HSLA-115 steel studied on a nanoscale by atom probe tomography [J]. Metall. Mater. Trans., 2017, 4A: 3205
|
| [24] |
Mishra S K, Das S, Ranganathan S. Precipitation in high strength low alloy (HSLA) steel: A TEM study [J]. Mater. Sci. Eng., 2002, A323: 285
|
| [25] |
Ju Y L, Davis C, Strangwood M. Simulation of coarsening of inter-lath cementite in a Q&T steel during tempering [J]. Mater. Sci. Technol., 2020, 36: 1440
|
| [26] |
Wang F, Qian D, Mao H, et al. Evolution of microstructure and mechanical properties during tempering of M50 steel with bainite/martensite duplex structure [J]. J. Mater. Res. Technol., 2020, 9: 6712
|
| [27] |
Li Y C, Cheng X N, Luo R, et al. Effect of thermal fatigue on microstructure and mechanical properties of B/M multiphase H13 steel. Heat Treat. Met., 2020, 45(8): 17
|
| [27] |
李洋城, 程晓农, 罗 锐 等. 热疲劳对B/M复相H13钢组织及力学性能的影响[J]. 金属热处理, 2020, 45(8): 17
|
| [28] |
Ning D, Dai C R, Wu J L, et al. Carbide precipitation and coarsening kinetics in low carbon and low alloy steel during quenching and subsequently tempering [J]. Mater. Charact., 2021, 176: 111111
|
| [29] |
Hou Z, Babu R P, Hedström P, et al. Early stages of cementite precipitation during tempering of 1C-1Cr martensitic steel [J]. J. Mater. Sci., 2019, 54: 9222
|
| [30] |
Clarke A J, Miller M K, Field R D, et al. Atomic and nanoscale chemical and structural changes in quenched and tempered 4340 steel [J]. Acta Mater., 2014, 77: 17
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|