Please wait a minute...
金属学报  2023, Vol. 59 Issue (9): 1279-1290    DOI: 10.11900/0412.1961.2023.00143
  研究论文 本期目录 | 过刊浏览 |
重力对高温合金定向凝固组织的影响
马德新1,2(), 赵运兴1,2, 徐维台1, 王富3
1深圳市万泽中南研究院有限公司 深圳 518045
2中南大学 粉末冶金研究院 长沙 410083
3西安交通大学 机电工程学院 西安 710049
Effect of Gravity on Directionally Solidified Structure of Superalloys
MA Dexin1,2(), ZHAO Yunxing1,2, XU Weitai1, WANG Fu3
1Shenzhen Wedge Central South Research Institute Co. Ltd., Shenzhen 518045, China
2Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
3School of Mechanical and Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
Dexin MA, Yunxing ZHAO, Weitai XU, Fu WANG. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1279-1290.

全文: PDF(3991 KB)   HTML
摘要: 

分别利用常规下抽拉法与新型上提拉法进行不同方向的高温合金定向凝固实验,对比研究重力对单晶铸件凝固组织的影响。结果表明,在常规下抽拉法实验的向上凝固过程中,容易出现雀斑、γ/γ'共晶上聚和籽晶回熔紊乱等问题。原因是糊状区内液体由于元素偏析引起密度减小,在重力作用下形成了上重下轻的失稳状态并引起对流。而通过新型上提拉法实现的顺重力凝固过程中,密度减小的液体处于糊状区上端,形成上轻下重的稳定状态,使重力的作用由失稳因素转化为维持稳定的因素,抑制了液体对流的产生与发展。采用新型上提拉法制备的单晶铸件中彻底消除了雀斑缺陷,抑制了γ/γ'共晶组织的向上聚集,也保证了低密度籽晶稳定的回熔和外延生长。顺重力定向凝固技术从根本上消除了重力对高温合金定向凝固的不良影响,有希望发展成为新一代的先进单晶叶片成型技术。

关键词 高温合金定向凝固重力凝固方向凝固组织    
Abstract

While using traditional methods of directionally solidifying superalloy castings, the liquid density at the lower region of the mushy zone gradually lowers than the top. This is due to a strong segregation of alloying elements. The gravitational force then exacerbates this density inversion, leading to upward convection from the mushy zone to the liquid ahead of the solidification front. This process, known as solutal convection, results in several solidification defects such as freckle defects, an upward accumulation of γ/γ' eutectic, and seeding process issues. As higher-generation single crystal superalloys continue to develop, the problems of element segregation and solutal convection become more pronounced. Traditional measures, such as adjusting process parameters, struggle to effectively alleviate these issues. Given that these problems largely arise from gravity-induced fluid flow, this work aims to investigate the role of gravity on solidification structure and propose appropriate solutions. To achieve this, the conventional pull-down and novel pull-up methods were adopted to perform directional solidification experiments with superalloys. The influence of gravity on solidification behavior is starkly different in these two experiments. In the pull-down process, dendrites grow upward, against gravity, leading to a variety of solidification defects such as freckles on the casting's lateral surface and an upward accumulation of γ/γ' eutectic on the upper surface of the single crystal turbine blade castings. Stray grains also formed in the remelting region during seeding. These phenomena are caused by the density inversion of the remaining liquid between dendrites, resulting in a top-heavy and bottom-light hydrodynamic state. Liquid convection in the mushy zone was then unavoidable under gravity in the pull-down process. In contrast, the pull-up process had dendrites growing downwards, in line with gravity, leaving the least dense liquid at the top of the mushy zone. In this top-light and bottom-heavy state, gravity stabilizes the segregated residual liquid in the mushy zone, thereby preventing solutal convection. Consequently, freckle defects were eliminated, and the γ/γ' eutectic structure was evenly distributed, not accumulated, on the upper surface of the single crystal blade's platform. Additionally, the stability of remelting and epitaxial growth of seed crystals was ensured by eliminating liquid convection. By using this pull-up process, the negative effects of gravity on the directional solidification of superalloys were removed, and all gravity-related solidification defects consequently disappeared. This novel pull-up process could potentially be developed into a new production process for single crystal superalloy castings, significantly improving casting quality. However, it should be noted that this new pull-up process is more complex in comparison to the conventional method. Although this work lays the groundwork for this process, further technological enhancements are required before this method can be applied to industrial production.

Key wordssuperalloy    directional solidification    gravity    solidification direction    solidification structure
收稿日期: 2023-03-31     
ZTFLH:  TG146  
基金资助:广东省引进创新创业团队项目(607264877417);深圳市海外高层次人才项目(KQTD2015032716463668)
作者简介: 马德新,男,1955年生,教授,博士
AlloyComposition (mass fraction / %)ρ
CrCoWMoAlTiTaReHfCNig·cm-3
CMSX-46.59.56.50.65.61.06.53.00.11-Bal.8.7
CMSX-69.85.0-3.04.94.72.0-0.05-Bal.8.0
CM2478.210.010.00.65.51.03.0-1.500.16Bal.8.5
表1  镍基高温合金CMSX-4、CMSX-6与CM247的成分及密度
图1  利用常规下抽拉和新型上提拉方法进行不同方向定向凝固的示意图
图2  采用下抽拉法制备的CMSX-4合金3种样品表面宏观腐蚀照片及相应横截面组织的OM像
图3  采用上提拉法制备的CMSX-4合金3种样品表面宏观腐蚀照片及相应横截面组织的OM像
图4  由下向上凝固(UWS)和由上向下凝固(DWS)示意图
图5  采用下抽拉法制备的CMSX-4叶片局部宏观照片、缘板铸态和热处理态纵截面组织的OM像
图6  采用下抽拉法制备的CMSX-4叶片缘板铸态和热处理态上、下表面横截面组织的OM像
图7  采用上提拉法制备的CMSX-4叶片缘板铸态和热处理态纵截面组织的OM像
图8  采用上拉法制备的CMSX-4叶片缘板铸态和热处理态上、下表面横截面组织的OM像
图9  下抽拉法凝固时枝晶及γ/γ'共晶的向上生长示意图
图10  上提法凝固时枝晶及γ/γ'共晶向下生长示意图
图11  采用下抽拉法和上提拉法以CMSX-6为籽晶制备CMSX-4单晶试棒的回熔区附近纵截面组织的OM像
图12  采用下抽拉法和上提拉法以CM247为籽晶制备CMSX-4单晶试棒的回熔区附近纵截面组织的OM像
1 Giamei A F, Kear B H. On the nature of freckles in nickel base superalloys [J]. Metall. Trans., 1970, 1: 2185
doi: 10.1007/BF02643434
2 Copley S M, Giamei A F, Johnson S M, et al. The origin of freckles in unidirectionally solidified castings [J]. Metall. Trans., 1970, 1: 2193
doi: 10.1007/BF02643435
3 Auburtin P, Wang T, Cockcroft S L, et al. Freckle formation and freckle criterion in superalloy casting [J]. Metall. Mater. Trans., 2000, 31B: 801
4 Tin S, Pollock T M. Predicting freckle formation in single crystal Ni-base superalloys [J]. J. Mater. Sci., 2004, 39: 7199
doi: 10.1023/B:JMSC.0000048732.02111.ee
5 Ma D X, Wu Q, Bührig-Polaczek A. Some new observations on freckle formation in directionally solidified superalloy components [J]. Metall. Mater. Trans., 2012, 43B: 344
6 Ma D X, Bührig-Polaczek A. The geometrical effect on freckle formation in the directionally solidified superalloy CMSX-4 [J]. Metall. Mater. Trans., 2014, 45A: 1435
7 Ma D X. Freckle formation during directional solidification of complex castings of superalloys [J]. Acta Metall. Sin., 2016, 52: 426
7 马德新. 定向凝固的复杂形状高温合金铸件中的雀斑形成 [J]. 金属学报, 2016, 52: 426
doi: 10.11900/0412.1961.2015.00379
8 Ma D X, Dong Z H, Wang F, et al. A phenomenological analysis of freckling in directional solidification of Ni-base superalloy: The role of edge and curvature in casting components [J]. Metall. Mater. Trans., 2020, 51A: 88
9 Seo S M, Lee J H, Yoo Y S, et al. A comparative study of the γ/γ' eutectic evolution during the solidification of Ni-base superalloys [J]. Metall. Mater. Trans., 2011, 42A: 3150
10 D’Souza N, Dong H B, Ardakani M G, et al. Solidification path in the Ni-base superalloy, IN713LC——Quantitative correlation of last stage solidification [J]. Scr. Mater., 2005, 53: 729
doi: 10.1016/j.scriptamat.2005.05.012
11 Wang F, Ma D X, Zhang J, et al. Effect of solidification parameters on the microstructures of superalloy CMSX-6 formed during the downward directional solidification process [J]. J. Crystal Growth, 2014, 389: 47
doi: 10.1016/j.jcrysgro.2013.11.084
12 Wang F, Ma D X, Zhang J, et al. Effect of local cooling rates on the microstructures of single crystal CMSX-6 superalloy: A comparative assessment of the Bridgman and the downward directional solidification processes [J]. J. Alloys Compd., 2014, 616: 102
doi: 10.1016/j.jallcom.2014.07.084
13 Wang F, Ma D X, Zhang J, et al. Solidification behavior of a Ni-based single crystal CMSX-4 superalloy solidified by downward directional solidification process [J]. Mater. Charact., 2015, 101: 20
doi: 10.1016/j.matchar.2015.01.003
14 Zhu Y X, Xu L Y, Zhao H E, et al. Formation of γ + γ' eutectic and control of σ-phase in a high Al-Ti cast Ni-base superalloy [J]. Acta Metall. Sin., 1986, 22: A93
14 朱耀宵, 徐乐英, 赵洪恩 等. 一种铸造镍基高温合金中(γ + γ')共晶的形成及σ相的控制 [J]. 金属学报, 1986, 22: A93
15 Warnken N, Ma D X, Mathes M, et al. Investigation of eutectic island formation in SX superalloys [J]. Mater. Sci. Eng., 2005, A413-414: 267
16 D’Souza N, Dong H B. Solidification path in third-generation Ni-based superalloys, with an emphasis on last stage solidification [J]. Scr. Mater., 2007, 56: 41
doi: 10.1016/j.scriptamat.2006.08.060
17 D’Souza N, Lekstrom M, Dai H J, et al. Quantitative characterisation of last stage solidification in nickel base superalloy using enthalpy based method [J]. Mater. Sci. Technol., 2007, 23: 1085
doi: 10.1179/174328407X213224
18 Ma D X, Wang F, Weng X H, et al. Influence of MC carbides on the formation of γ/γ' eutectics in single crystal superalloy CM247LC [J]. Acta Metall. Sin., 2017, 53: 1603
18 马德新, 王 富, 温序晖 等. CM247LC单晶高温合金中MC碳化物对γ/γ'共晶反应的影响 [J]. 金属学报, 2017, 53: 1603
doi: 10.11900/0412.1961.2017.00110
19 Ma D X, Wang F. Randomly orientated eutectic grains in single crystal castings of superalloys [J]. Foundry, 2019, 68: 1342
19 马德新, 王 富. 高温合金单晶铸件中的杂乱共晶缺陷 [J]. 铸造, 2019, 68: 1342
20 Ma D X, Zhao Y X, Wei J H, et al. Upward accumulation analysis of eutectics in single crystal superalloy blade castings [J]. Foundry, 2021, 70: 1302
20 马德新, 赵运兴, 魏剑辉 等. 单晶高温合金叶片铸件中的共晶上聚现象分析 [J]. 铸造, 2021, 70: 1302
21 Ma D X, Zhao Y X, Xu W T, et al. Surface effect on eutectic structure distribution in single crystal superalloy castings [J]. Acta Metall. Sin., 2021, 57: 1539
doi: 10.11900/0412.1961.2020.00404
21 马德新, 赵运兴, 徐维台 等. 高温合金单晶铸件中共晶组织分布的表面效应 [J]. 金属学报, 2021, 57: 1539
doi: 10.11900/0412.1961.2020.00404
22 Yang X L, Ness D, Lee P D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4 [J]. Mater. Sci. Eng., 2005, A413-414: 571
23 Zhao N R, Li J G, Liu J L, et al. Solidification interface in growth of single crystal superalloys by seeding technique [J]. J. Mater. Eng., 2007, (11): 24
23 赵乃仁, 李金国, 刘金来 等. 籽晶法生长高温合金单晶凝固界面研究 [J]. 材料工程, 2007, (11): 24
24 Yang W C, Hu S S, Huo M, et al. Orientation controlling of Ni-based single-crystal superalloy by a novel method: Grain selection assisted by un-melted reused seed [J]. J. Mater. Res. Technol., 2019, 8: 1347
doi: 10.1016/j.jmrt.2018.10.005
25 Hu S S, Liu L, Yang W C, et al. Inhibition of stray grains at melt-back region for re-using seed to prepare Ni-based single crystal superalloys [J]. Progr. Nat. Sci. Mater. Int., 2019, 29: 582
doi: 10.1016/j.pnsc.2019.08.006
26 Ford D A, Hill A D. Single crystal seed alloy [P]. US Pat, 6740176, 2004
27 Guo J, Li J G, Liu J D, et al. Formation mechanism of fusion zone in growth of single crystal superalloy with low-segregated heterogeneous seed [J]. Acta Metall. Sin., 2018, 54: 419
doi: 10.11900/0412.1961.2017.00144
27 郭 静, 李金国, 刘纪德 等. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究 [J]. 金属学报, 2018, 54: 419
28 Ma D X, Zhao Y X, Xu W T, et al. Influence of seeding materials on epitaxial growth of single crystal superalloys [J]. Chin. J. Nonferrous Met., 2023, 33: 445
28 马德新, 赵运兴, 徐维台 等. 高温合金籽晶材料对单晶外延生长的影响 [J]. 中国有色金属学报, 2023, 33: 445
29 Ma D X, Zhang Q Y, Wang H Y, et al. Effect of solidification condition change on stray grain defect formation in single crystal casting of superalloys [J]. Foundry, 2019, 68: 103
29 马德新, 张琼元, 王海洋 等. 高温合金单晶铸造中凝固条件的时空变化及对杂晶缺陷的影响 [J]. 铸造, 2019, 68: 103
30 Beckmann C, Gu J P, Boettinger W J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings [J]. Metall. Mater. Trans., 2000, 31A: 2545
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[7] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[8] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[9] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[10] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[11] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[12] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 卢毓华, 王海舟, 李冬玲, 付锐, 李福林, 石慧. 基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法[J]. 金属学报, 2023, 59(7): 841-854.